Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
358-370
Opis fizyczny
Daty
wydano
2006-09-01
online
2006-09-01
Twórcy
autor
- Kyoto University, ambro@kurims.kyoto-u.ac.jp
Bibliografia
- [1] V. Alexeev: “Two two-dimensional terminations”, Duke Math. J., Vol. 69(3), (1993), pp. 527–545. http://dx.doi.org/10.1215/S0012-7094-93-06922-0
- [2] F. Ambro: “On minimal log discrepancies”, Math. Res. Lett., Vol. 6(5–6), (1999), pp. 573–580.
- [3] A. Borisov: “Minimal discrepancies of toric singularities”, Manuscripta Math., Vol. 92(1), (1997), pp. 33–45.
- [4] A. Borisov: “On classification of toric singularities”, Algebraic geom., Vol. 9; J. Math. Sci. (New York), Vol. 94(1), (1999), pp. 1111–1113.
- [5] J.W.S. Cassels: An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45, Cambridge University Press, New York, 1957.
- [6] J. Lawrence: Finite unions of closed subgroups of the n-dimensional torus, Applied geometry and discrete mathematics, 433–441, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991.
- [7] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988.
- [8] V.V. Shokurov: Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems-Katata, 1988, pp. 30–32.
- [9] V.V. Shokurov: A.c.c. in codimension 2, preprint 1993.
- [10] V.V. Shokurov: “Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips”, Tr. Mat. Inst. Steklova (Russian), Vol. 246 (2004); Algebr. Geom. Metody, Svyazi i Prilozh., pp. 328-351; translation in: Proc. Steklov Inst. Math., Vol. 3(246), 2004, pp. 315–336.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-006-0013-x