Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 3 | 2 | 245-250
Tytuł artykułu

Multiples of left loops and vertex-transitive graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Via representation of vertex-transitive graphs on groupoids, we show that left loops with units are factors of groups, i.e., left loops are transversals of left cosets on which it is possible to define a binary operation which allows left cancellation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
3
Numer
2
Strony
245-250
Opis fizyczny
Daty
wydano
2005-06-01
online
2005-06-01
Twórcy
Bibliografia
  • [1] A.A. Albert: “Quasigroups I”, Trans. Amer. Math. Soc., Vol. 54, (1943), pp. 507–520. http://dx.doi.org/10.2307/1990259
  • [2] W. Dörfler: “Every regular graph is a quasi-regular graph”, Discrete Math., Vol. 10, (1974), pp. 181–183. http://dx.doi.org/10.1016/0012-365X(74)90031-4
  • [3] E. Mwambene: Representing graphs on Groupoids: symmetry and form, Thesis (PhD), University of Vienna, 2001.
  • [4] G. Gauyacq: “On quasi-Cayley graphs”, Discrete Appl. Math., Vol. 77, (1997), pp. 43–58. http://dx.doi.org/10.1016/S0166-218X(97)00098-X
  • [5] C. Praeger: “Finite Transitive permutation groups and finite vertex-transitive graphs”, In: G. Sabidussi and G. Hahn (Eds.): Graph Symmetry: Algebraic Methods and Applications, NATO ASI Series, Vol. 497, Kluwer Academic Publishers, The Netherlands, Dordrecht, 1997.
  • [6] G. Sabidussi: “Vertex-transitive graphs”, Monatsh. Math., Vol. 68, (1964), pp. 426–438. http://dx.doi.org/10.1007/BF01304186
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_BF02479200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.