Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
This paper revisits the Bézout, Sylvester, and power-basis matrix representations of the greatest common divisor (GCD) of sets of several polynomials. Furthermore, the present work introduces the application of the QR decomposition with column pivoting to a Bézout matrix achieving the computation of the degree and the coeffcients of the GCD through the range of the Bézout matrix. A comparison in terms of computational complexity and numerical effciency of the Bézout-QR, Sylvester-QR, and subspace-SVD methods for the computation of theGCDof sets of several polynomials with real coeffcients is provided.Useful remarks about the performance of the methods based on computational simulations of sets of several polynomials are also presented.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
202-224
Opis fizyczny
Daty
wydano
2017-10-26
otrzymano
2017-06-13
zaakceptowano
2017-09-06
online
2017-10-20
Twórcy
autor
- ,
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2017-0015