Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly Parter vertices. Then, we investigate the change in multiplicity of an eigenvalue based upon a change in an edge value. We show how the multiplicity of the eigenvalue changes depending upon the status of the edge and the edge value. This work explains why, in some cases, edge values have no effect on multiplicities. We also characterize, more precisely, how multiplicity changes with the removal of two adjacent vertices.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
51-60
Opis fizyczny
Daty
wydano
2017-01-01
otrzymano
2016-05-23
zaakceptowano
2016-09-27
online
2017-01-20
Twórcy
autor
- Department of Integrated Arts and Science, Kitakyushu National College of Technology, Kokuraminami-ku, Kitakyushu, 802-0985,, toyonaga@kct.ac.jp
autor
- Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795,, crjohnso@math.wm.edu
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2017-0004