Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We disprove a conjecture made by Rajesh Pereira and Joanna Boneng regarding the upper bound on the number of doubly quasi-stochastic scalings of an n × n positive definite matrix. In doing so, we arrive at the true upper bound for 3 × 3 real matrices, and demonstrate that there is no such bound when n ≥ 4.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
141-150
Opis fizyczny
Daty
otrzymano
2015-11-13
zaakceptowano
2016-01-30
online
2016-02-22
Twórcy
autor
- Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
Bibliografia
- [1] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statistics, 35(2):876–879, 1964. [Crossref]
- [2] A.W. Marshall and I. Olkin. Scaling of matrices to achieve specified row and column sums. Numer. Math., 12(1):83–90, 1968. [Crossref]
- [3] M. V. Menon. Reduction of amatrix with positive elements to a doubly stochasticmatrix. Proc. Amer.Math. Soc., 18:244–247, 1967. [Crossref]
- [4] R. Brualdi, S. Parter, and H. Schneider. The diagonal equivalence of a non-negative matrix to a stochastic matrix. J. Math. Anal. Appl., 16:31–50, 1966. [Crossref]
- [5] C. R. Johnson and R. Reams. Scaling of symmetric matrices by positive diagonal congruence. Linear Multilinear Algebra, 57:123–140, 2009. [Crossref]
- [6] R. Pereira and J. Boneng. The theory and applications of complex matrix scalings, Spec. Matrices, 2: 68-77, 2014
- [7] P. J. Davis. Circulant Matrices. John Wiley & Sons, 1979.
- [8] D. P. O’Leary. Scaling symmetric positive definite matrices to prescribed row sums. Linear Algebra Appl., pages 185–191, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2016-0014