Warianty tytułu
Języki publikacji
Abstrakty
We use elementary triangular matrices to obtain some factorization, multiplication, and inversion properties of triangular matrices. We also obtain explicit expressions for the inverses of strict k-Hessenberg matrices and banded matrices. Our results can be extended to the cases of block triangular and block Hessenberg matrices. An n × n lower triangular matrix is called elementary if it is of the form I + C, where I is the identity matrix and C is lower triangular and has all of its nonzero entries in the k-th column,where 1 ≤ k ≤ n.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-08-18
zaakceptowano
2015-10-21
online
2015-11-06
Twórcy
autor
-
Department of Mathematics, Universidad Autónoma Metropolitana, Iztapalapa,
Apartado 55-534, México D. F. 09340, México
Bibliografia
- [1] M. Elouafi, A. Driss Aiat Hadj, A new recursive algorithm for inverting Hessenberg matrices, Appl. Math. Comp., 214 (2009)497–499.
- [2] Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra Appl., 24 (1979) 93–97.
- [3] M. J. Piff, Inverses of banded and k-Hessenberg matrices, Linear Algebra Appl., 85 (1987) 9–15.
- [4] W. Shur, A simple closed form for triangular matrix powers, Electr. J. Linear Algebra, 22 (2011) 1000–1003.
- [5] L. Verde-Star, Infinite triangular matrices, q-Pascal matrices, and determinantal representations, Linear Algebra Appl., 434(2011) 307–318.
- [6] L. Verde-Star, Divided differences and linearly recurrent sequences, Stud. Appl. Math. 95 (1995) 433–456.
- [7] L. Verde-Star, Functions of matrices, Linear Algebra Appl., 406 (2005) 285–300.
- [8] Z. Xu, On inverses and generalized inverses of Hessenberg matrices, Linear Algebra Appl., 101 (1988) 167–180.
- [9] T. Yamamoto, Y. Ikebe, Inversion of band matrices, Linear Algebra Appl., 24 (1979) 105–111.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2015-0025