Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 3 | 1 |
Tytuł artykułu

On the determinants of some kinds of circulant-type matrices with generalized number sequences

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, determinant computation of circulant type matrices with well-known number sequences has been studied, extensively. This study provides the determinants of the RFMLR, RLMFL, RFPrLrR and RLPrFrL circulant matrices with generalized number sequences of second order.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
3
Numer
1
Opis fizyczny
Daty
otrzymano
2015-08-05
zaakceptowano
2015-10-03
online
2015-10-16
Twórcy
  • Department of Mathematics, Polatlı Art and Science Faculty, Gazi
    University, 06900, Ankara, Turkey
autor
  • Department of Mathematics, Polatlı Art and Science Faculty, Gazi
    University, 06900, Ankara, Turkey
Bibliografia
  • [1] S.-Q. Shen, J.M. Cen, Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers,Appl. Math. Comput. 217 (2011), no.23, 9790-9797.
  • [2] D. Bozkurt, T.Y. Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers, Appl.Math. Comput. 219 (2012), no.2, 544-551.
  • [3] D. Bozkurt, On the determinants and inverses of circulantmatriceswith a general number sequence, arXiv:1202.1068, 2012.
  • [4] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3.3 (1965): 161-176.
  • [5] N. Shen, Z. Jiang, J. Li, On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers,WSEAS Trans. Math., 2013:42-53.
  • [6] Z. Jiang, N. Shen, J. Li, Determinants of the RFMLR circulantmatriceswith Perrin, Padovan, Tribonacci, and generalized Lucasnumbers, J. Appl. Math., 2014, Article ID 585438, pp. 1-11.
  • [7] Z. P. Tian, Fast algorithms for solving the inverse problem of AX = b in four different families of patternedmatrices, Far EastJ. Appl. Math.52, 2011, pp. 1–12.
  • [8] D. Chillag, Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants,and generalized cyclic codes, Linear Algebra Appl.218, 1995, pp. 147–183.
  • [9] P.J. Davis, Circulant Matrices, Wiley, NewYork, 1979.
  • [10] Z. L. Jiang and Z. X. Zhou, Circulant Matrices, Chengdu Technology University Publishing Company, Chengdu, 1999.
  • [11] T. Xu, Z. Jiang, Z Jiang, Explicit determinants of the RFPrLrR circulant and RLPrFrL circulant matrices involving some famousnumbers, Abstr. Appl. Anal., 2014, Article ID 647030, 9 p.
  • [12] Y. Gao, Z. Jiang, Y. Gong, On determinants and inverses of skew circulant and skew circulant matrices with Fibonacci andLucas numbers, WSEAS Trans. Math., 2013, 12, 472-481.
  • [13] X. Jiang, K. Hong, Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstr.Appl. Anal., 2014, Article ID 273680, 12 p.
  • [14] Z. Jiang, J. Li, N. Shen, On the explicit determinants and singularities of r-circulant and left r-circulant matrices with somefamous numbers, WSEAS Trans. Math.,2013, 12, 341-351.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2015-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.