Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Minimum disconnecting cuts of connected graphs provide fundamental information about the connectivity structure of the graph. Spectral methods are well-known as stable and efficient means of finding good solutions to the balanced minimum cut problem. In this paper we generalise the standard balanced bisection problem for static graphs to a new “dynamic balanced bisection problem”, in which the bisecting cut should be minimal when the vertex-labelled graph is subjected to a general sequence of vertex permutations. We extend the standard spectral method for partitioning static graphs, based on eigenvectors of the Laplacian matrix of the graph, by constructing a new dynamic Laplacian matrix, with eigenvectors that generate good solutions to the dynamic minimum cut problem. We formulate and prove a dynamic Cheeger inequality for graphs, and demonstrate the effectiveness of the dynamic Laplacian matrix for both structured and unstructured graphs.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2014-09-23
zaakceptowano
2015-02-13
online
2015-02-25
Twórcy
autor
- School of Mathematics and Statistics, The University of New South Wales, Sydney NSW 2052, Australia
autor
- School of Mathematics and Statistics, The University of New South Wales, Sydney NSW 2052, Australia
Bibliografia
- [1] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.[Crossref]
- [2] C. J. Alpert, A. B. Kahng, and S.-Z. Yao. Spectral partitioning with multiple eigenvectors. Discrete Applied Mathematics,90(1):3–26, 1999.[Crossref]
- [3] W. N. Anderson Jr and T. D. Morley. Eigenvalues of the Laplacian of a graph. Linear and Multilinear Algebra, 18(2):141–145,1985.
- [4] A. S. Bandeibra, A. Singer, and D. A. Spielman. A Cheeger inequality for graph connection Laplacian. SIAM Journal onMatrixAnalysis and Applications, 34(4):1611–1630, 2013.[Crossref][WoS]
- [5] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in graph partitioning. 2013.
- [6] P. K. Chan, M. D. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning and clustering. Computer-Aided Design ofIntegrated Circuits and Systems, IEEE Transactions on, 13(9):1088–1096, 1994.
- [7] F. Chung. Spectral Graph Theory, volume 92. American Mathematical Society, CBMS Regional Conference Series in Mathematicsedition, 1996.
- [8] R. R. Coifman and M. J. Hirn. Diffusionmaps for changing data. Applied and Computational Harmonic Analysis, 36(1):79–107,2014.[Crossref]
- [9] G. Demirel, F. Vazquez, G.A. Böhme, and T. Gross. Moment-closure approximations for discrete adaptive networks. PhysicaD, 267, 68–80, 2014.[WoS]
- [10] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route planning. In Experimental Algorithms, volume6630, pages 376–387. Springer, 2011.
- [11] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development,17(5):420–425, 1973.[Crossref]
- [12] D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke. Tracking structure of streaming social networks. In Parallel and DistributedProcessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 1691–1699. IEEE,2011.
- [13] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–305, 1973.[WoS]
- [14] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. CzechoslovakMathematical Journal, 25:619–633, 1975.
- [15] P.-O. Fjällström. Algorithms for graph partitioning: A survey. Linköping electronic articles in Computer and InformationScience, 3(10), 1998.
- [16] J. H. Fowler and N. A. Christakis. Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 yearsin the framingham heart study. British Medical Journal, 337:1–9, 2008.[WoS]
- [17] G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM Journal on ScientificComputing, 24(6):1839–1863, 2003.[Crossref]
- [18] G. Froyland, N. Santitissadeekorn, and A. Monahan. Transport in time-dependent dynamical systems: Finite-time coherentsets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043116, 2010.
- [19] M. R. Garey and D. S. Johnson. Computers and Intractability:A Guide to Theory of NP-completeness. W.H Freeman and Co,1970.
- [20] L. Grady and E. Schwartz. Isopermetric graph partitioning for image segmentation. IEEE Transactions on Pattern Analysisand Machine Intelligence, 28(3):469–475, 2006.
- [21] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219–229, 1970.[Crossref]
- [22] P. Holme and J. Saramäki. Temporal networks. Physics reports, 519(3): 97–125, 2012.
- [23] R.A. Horn and C.A. Johnson. Matrix Analysis. Cambridge, 1990.
- [24] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel Computing, 26:1519–1534, 2000.[Crossref]
- [25] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image and video synthesis using graph cuts. In ACMTransactions on Graphics (ToG), volume 22, pages 277–286, 2003.[Crossref]
- [26] K. Li, M. Small, and X. Fu. Generation of clusters in complex dynamical networks via pinning control. Journal of Physics A:Mathematical and Theoretical, 41(50):505101, 2008.[WoS]
- [27] P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, and J.P. Onnela. Community structure in time-dependent, multiscale, andmultiplex networks. Science, 328(5980):876–878, 2010.
- [28] B. Mohar. Isoperimetric number of graphs. Journal of Combinatorial Theory, 47:274–291, 1989.
- [29] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Analysis of Operators, volume 4. Academic Press, 1978.
- [30] J. Scott. Social Network Analysis: A Handbook. SAGE, 2000.
- [31] J. Shi and J.Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis andMachine Intelligence,22(8):888–905, 2000.
- [32] M. Small and C. K. Tse. Small world and scale free model of transmission of SARS. International Journal of Bifurcation andChaos, 15(05):1745–1755, 2005. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2015-0003