Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Prevention and early diagnosis of forthcoming preterm labor is of vital importance in preventing child mortality. To date, our understanding of the coordination of uterine contractions is incomplete. Among the many methods of recording uterine contractility, electrohysterography (EHG) – the recording of changes in electrical potential associated with contraction of the uterine muscle, seems to be the most important from a diagnostic point of view. There is some controversy regarding whether EHG may identify patients with a high risk of preterm delivery. There is a need to check various digital signal processing techniques to describe the recorded signals. The study of synchronization of multivariate signals is important from both a theoretical and a practical point of view. Application of the Hilbert transformation seems very promising.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
61-72
Opis fizyczny
Daty
wydano
2015-12-01
online
2016-01-06
Twórcy
autor
- Department of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Poland
autor
- Department of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Poland
autor
- Department of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Poland
Bibliografia
- Boashash, B. (1992a). Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 80(4), 520–538.[Crossref]
- Boashash, B. (1992b). Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proceedings of the IEEE, 80(4), 540–568.[Crossref]
- Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911–922.[WoS]
- Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), 429–441.
- Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., et al. (2000). Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.[Crossref]
- Govindan, R. B., Siegel, E., Mckelvey, S., Murphy, P., Lowery, C. L., & Eswaran, H. (2015). Tracking the Changes in Synchrony of the Electrophysiological Activity as the Uterus Approaches Labor Using Magnetomyographic Technique. Reproductive Sciences, 22 (5), 595–601.[Crossref][WoS]
- Hahn, S. L. (1996). Hilbert transforms in signal processing. Boston, London: Artech House.
- Horoba, K., Jezewski, J., Wrobel, J., & Graczyk, S. (2001). Algorithm for detection of uterine contractions from electrohysterogram. Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, 3, 2161–2164. DOI:10.1109/IEMBS.2001.1017198[Crossref]
- Karlsson, B., Terrien, J., Gudmundsson, V., Steingrimsdottir, T., & Marque, C. (2007, January). Abdominal EHG on a 4 by 4 grid: mapping and presenting the propagation of uterine contractions. In T. Jarm, P. Kramar, & A. Zupanic (Eds.), 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007 (pp. 139–143). Berlin, Heidelberg, Germany: Springer.
- MATLAB Newsgroup (1997, June 19). Re: hilbert transform [Online forum comment] Retrieved from
- Mormann, F., Lehnertz, K., David, P., & Elger, C. E. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3), 358–369.[Crossref]
- Nagarajan, R., Eswaran, H., Wilson, J. D., Murphy, P., Lowery, C., & Preissl, H. (2003). Analysis of uterine contractions: a dynamical approach. The Journal of Maternal-Fetal & Neonatal Medicine, 14(1), 8–21.[Crossref]
- Oczeretko, E., Kitlas, A., Swiatecka, J., Borowska, M., & Laudanski, T. (2005). Nonlinear dynamics in uterine contractions analysis. In G. A. Losa, D. Merlini, T. F. Nonnenmacher, & E. R. Weilbel (Eds.), Fractals in Biology and Medicine (pp. 215–222). Basel, Switzerland: Birkhäuser.[Crossref]
- Prokhorov, M. D., Ponomarenko, V. I., Gridnev, V. I., Bodrov, M. B., & Bespyatov, A. B. (2003). Synchronization between main rhythmic processes in the human cardiovascular system. Physical Review E, 68(4), 041913.[Crossref]
- Radhakrishnan, N., Wilson, J. D., Lowery, C., Murphy, P., & Eswaran, H. (2000a). Testing for nonlinearity of the contraction segments in uterine electromyography. International Journal of Bifurcation and Chaos, 10(12), 2785–2790.[Crossref]
- Radhakrishnan, N., Wilson, J. D., Lowery, C., Eswaran, H., & Murphy, P. (2000b). A fast algorithm for detecting contractions in uterine electromyography. Engineering in Medicine and Biology Magazine, IEEE, 19(2), 89–94.
- Sun, J., Hong, X., & Tong, S. (2012). Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests. IEEE Transactions on Biomedical Engineering, 59(8), 2254–2263.[Crossref]
- Sahoo, J. P., Behera, S., & Ari, S. (2011). A Novel Technique for QRS Complex detection in ECG Signal based on Hilbert Transform and Autocorrelation. International Conference on Electronics Systems (ICES–2011).
- Toland, J. F. (1997). A few remarks about the Hilbert transform. Journal of Functional Analysis, 145(1), 151–174.
- Wang, L., Lu, A., Zhang, S., Niu, W., Zheng, F., & Gong, M. (2015). Fatigue-related electromyographic coherence and phase synchronization analysis between antagonistic elbow muscles. Experimental Brain Research, 233(3), 971–982.[Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_slgr-2015-0042