Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 3 | 4 | 22-40
Tytuł artykułu

Co-constructive Logics for Proofs and Refutations

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we do not want to equate falsity with the non-existence of a proof since this would render a statement such as “pi is transcendental” false prior to 1882. In addition, the intuitionist account of negation as shorthand for the derivation of absurdity is inadequate, particularly outside of purely mathematical contexts. To deal with these issues, I investigate the dual of intuitionistic logic, co-intuitionistic logic, as a logic of refutation, alongside intuitionistic logic of proofs. Direct proof and refutation are dual to each other, and are constructive, whilst there also exist syntactic, weak, negations within both logics. In this respect, the logic of refutation is weakly paraconsistent in the sense that it allows for statements for which, neither they, nor their negation, are refuted. I provide a proof theory for the co-constructive logic, a formal dualizing map between the logics, and a Kripke-style semantics. This is given an intuitive philosophical rendering in a re-interpretation of Kolmogorov's logic of problems.
Wydawca
Czasopismo
Rocznik
Tom
3
Numer
4
Strony
22-40
Opis fizyczny
Daty
online
2015-01-31
Twórcy
Bibliografia
  • 1. Bellin, G., Carrara, M., Chiffi, D., and Menti, A. Pragmatic and dialogic interpretations of bi-intuitionism. Logic and Logical Philosophy, 2014.
  • 2. Brouwer, L. L.E.J. Brouwer: collected works. Amsterdam: North-Holland Publishing Company, 1975.
  • 3. Cook, R. T. and Cogburn, J. What negation is not: Intuitionism and ‘0=1’, Analysis, 60(265):5-12, 2000.
  • 4. Crolard, T. Subtractive logic, Theoretical Computer Science, 254(1):151-185, 2001.[Crossref]
  • 5. Dubucs, J. Feasibility in logic, Synthese, 132(3):213-237, 2002.[Crossref]
  • 6. Dubucs, J. and Marion, M. Radical anti-realism and substructural logicsm, [in:] Rojszczak, A., Cachro, J., and Kurczewski, G. (editors), Philosophical Dimensions of Logic and Science, pages 235-249. Kluwer Academic Publishers, 2003.
  • 7. Dummett, M. Reply to Dag Prawitz, [in:] Taylor, B. (editor), Michael Dummett: Contributions to Philosophy, pages 281-316. Distributors for the United States and Canada: Kluwer Academic Publishers, 1987.
  • 8. Dummett, M. A. E. The seas of language. Oxford: Oxford University Press, 1993.
  • 9. Dummett, M. A. E. Elements of intuitionism. Oxford: Oxford University Press, 2000.
  • 10. Dunn, J. M. and Hardegree, G. Algebraic methods in philosophical logic. Oxford: Oxford University Press, 2001.
  • 11. Goodman, N. The logic of contradictions, Zeitschrift fur Mathematische Logic und Grundlagen der Arithmetik, 27:119-126, 1981.
  • 12. Hardegree, G. M. Completeness and super-valuations, Journal of Philosophical Logic, 34(1):81-95, 2005.
  • 13. Heyting, A. Intuitionism. Amsterdam: North-Holland Pub. Co., 1971.
  • 14. Kolmogorov, A. N. Zur Deutung der Intuitionistischen Logic, Mathematische Zeitschrift, 35:58-65, 1932.[Crossref]
  • 15. Mancosu, P. From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s. Oxford: Oxford University Press, 1998.
  • 16. Martin-Löf, P. On the meanings of the logical constants and the justifications of the logical laws, Nordic Journal of Philosophical Logic, 1(1):11-60, 1996.
  • 17. Martino, E. and Usberti, G. Temporal and atemporal truth in intuitionistic mathematics, Topoi, 13(2):83-92, 1994.[Crossref]
  • 18. Mortensen, C. Inconsistent mathematics, Vol. 312. Springer, 1995.
  • 19. Nelson, D. Constructible falsity, Journal of Symbolic Logic, 14(1):16-26, 1949.
  • 20. Pietz, A. Not quite intuitionism, 2011. http://epub.ub.uni-muenchen.de/12589/1/DGPhil_Pietz.pdf
  • 21. Prawitz, D. Meaning approached via proofs, Synthese, 148(3):507-524, 2006.[Crossref]
  • 22. Priest, G. Dualising intuitionictic negation, Principia, 13(2):165-184, 2009.
  • 23. Raatikainen, P. Conceptions of truth in intuitionism, History and Philosophy of Logic, 25(2):131-145, 2004.
  • 24. Rauszer, C. Applications of Kripke models to Heyting-Brouwer logic, Studia Logica, 36(1-2):61-71, 1977.
  • 25. Ripley, D. Embedding denial, [in:] Caret, C., and Hjortland, O., (eds.), Foundations of Logical Consequence, Oxford University Press, forthcoming 2015.
  • 26. Shramko, Y. Dual intuitionistic logic and a variety of negations: The logic of scientific research, Studia Logica, 80(2-3):347-367, 2005.
  • 27. Shramko, Y., Dunn, J. M., and Takenaka, T. The trilaticce of constructive truth values, Journal of Logic and Computation, 11(1):761-788, 2001.
  • 28. Skura, T. On pure refutation formulations of sentential logics, Bulletin of the Section of Logic, 19(3):102-107, 1990.
  • 29. Słupecki, J., Bryll, G., and Wybraniec-Skardowska, U. Theory of rejected propositions. I, Studia Logica, 29(1):75-123, 1971.
  • 30. Słupecki, J., Bryll, G., and Wybraniec-Skardowska, U. The theory of rejected propositions. II, Studia Logica, 30(1):97-145, 1972.
  • 31. Solomon, G. and DeVidi, D. Empirical negation in intuitionistic logic, [in:] DeVidi, D., Kenyon, T. (eds.) A logical Approach to Philosophy, pages 151-168. Springer, 2006.
  • 32. Tennant, N. Negation, absurdity and contrariety, [in:] Gabbay, D. M., Wansing, H., (eds.) What is Negation?, pages 199-222. Springer, 1999.
  • 33. Trafford, J. Abstract duality and co-constructive logics, manuscript under submission, 2014.
  • 34. Trafford, J. Duality and Inferential Semantics, Axiomathes, forthcoming 2015.
  • 35. Urbas, I. Dual-intuitionistic logic, Notre Dame Journal of Formal Logic, 37(3):440-451, 1996.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_sh-2015-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.