Warianty tytułu
Języki publikacji
Abstrakty
In the presence of massive data coming with high heterogeneity we need to change our statistical thinking and statistical education in order to adapt both - classical statistics and software developments that address new challenges. Significant developments include open data, big data, data visualisation, and they are changing the nature of the evidence that is available, the ways in which it is presented and the skills needed for its interpretation. The amount of information is not the most important issue – the real challenge is the combination of the amount and the complexity of data. Moreover, a need arises to know how uncertain situations should be dealt with and what decisions should be taken when information is insufficient (which can also be observed for large datasets). In the paper we discuss the idea of computational statistics as a new approach to statistical teaching and we try to answer a question: how we can best prepare the next generation of statisticians.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
144-152
Opis fizyczny
Daty
wydano
2015-12-01
otrzymano
2015-05-20
zaakceptowano
2015-12-03
online
2016-04-30
Twórcy
autor
- University of Lodz, Faculty of Economics and Sociology, Institute of Statistics and Demography, POW 3/5, 90-255 Łódź, Poland, czedoman@uni.lodz.pl
autor
- Centre of Mathematical Statistics, Statistical Office in Łódź Suwalska 29, 93-176 Lódź, Poland, jedrzej@uni.lodz.pl
Bibliografia
- Bryce, G.R., Gould, R., Notz W.I., Peck, R.L. (2000). Curriculum Guidelines for Bachelor of Science Degrees in Statistical Science. The ASA Undergraduate Statistics Education Initiative Website: .
- Bessant, K.C., MacPherson, E.D. (2002). Thoughts on the Origins, Concepts, and Pedagogy of Statistics as a “Separate Discipline”. The American Statistician, 56 (1), 22–28.[Crossref]
- Domański, Cz. (2011). Statystyka nauką dla wszystkich. In: Statystyka w Służbie Publicznej. Wyzwania XXI w. Kraków: Statistical Office in Kraków.
- Givens, G.H., Hoeting, J.A. (2005). Computational Statistics. Wiley Series in Probability and Statistics. New York: Wiley-Interscience.
- Lauro, C. (1996). Computational statistics or statistical computing, is that the question?, Computational Statistics & Data Analysis, 23 (1), 191–193.[Crossref]
- Nolan, D., Temple, L.D. (2010). Computing in the Statistics Curricula. The American Statistician, 64 (2), 97–107.[WoS][Crossref]
- Rao, C.R. (1997). Statistics and Truth: Putting Chance to Work (2nd Edition). Singapore: World Scientific Publication.
- Rao, C.R. (1994). Statystyka i prawda. Warszawa: Wydawnictwo Naukowe PWN.
- Stefanowicz, B. (2001). Edukacja statystyczna. Kwartalnik Statystyczny, III (1), 2–5.
- Stigler, S.M. (2007). Statistics and the Wealth of Nations. International Statistical Review, 73 (2), 223–226.[Crossref]
- Szupiluk, R. (2013). Dekompozycje wielowymiarowe w agregacji predykcyjnych modeli datamining. Warszawa: The Publishing House of the Warsaw School of Economics.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_foli-2015-0041