Warianty tytułu
Języki publikacji
Abstrakty
The study investigates the mean reversion in 1-minute EURUSD. Intraday patters in FX seem of particular interest as more and more trades in the FX market are automated high frequency trades (HFT). The study reveals that the mean reversion is present in the intraday EURUSD. ADF test rejects unit root. The average of the deviation of EURUSD from its (moving) mean is close to zero. Furthermore when short and long positions are simultaneously open, the average maximum return achieved through 24 hour period is similar, providing yet another evidence for mean reversion and lack of weak form of market efficiency.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
152-162
Opis fizyczny
Daty
wydano
2014-12-01
otrzymano
2014-09-23
zaakceptowano
2014-10-24
online
2015-06-03
Twórcy
autor
- Gdansk School of Banking, Dolna Brama 8, 80-821 Gdańsk, Poland, marta@witor.biz
Bibliografia
- Andersen, T.G., Bollerslev, T., Diebold, F.X. & Vega, C. (2003). Micro effects of macro announcements: real time price discovery in foreign exchange. American Economic Review, 93 (1), 38–62.[Crossref]
- Andersen, T.G., Bollerslev, T., Diebold, F.X. & Vega, C. (2007). Real-time price discovery in global stock, bond and foreign exchange markets. Journal of International Economics, 73, 251–277.
- BIS (2011). Bank for International Settlements. High-frequency trading in the foreign exchange market, BIS, September.
- Boero, G. & Marrocu, E. (2002). The performance of non linear exchange rate models: A forecasting comparison. Journal of Forecasting, 21, 513–542.
- Bilson, J.F.O. (1978). Rational Expectations and the Exchange Rate. In: The Economics of Exchange Rates: Selected Studies, eds. J.A. Frenkel, H.G. Johnson. Reading, MA: Addison-Wesley Press.
- Cartea, A. & Figueroa, M.G. (2005). Pricing in Electricity Markets: a mean reverting jump diffusion model with seasonality. Applied Mathematical Finance, 12, 313–335.
- Dempster, M.A.H., Payne, T.W., Romahi, Y. & Thompson, G.W.P. (2001). Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Transactions on Neural Networks, 12 (4), 744–754.[Crossref]
- Dornbusch, R. (1976). Expectations and Exchange Rate Dynamics. Journal of Political Economy, 84 (6), 1161–1176.
- Faust, J., Rogers, J.H., Wang, S.Y.B. & Wright, J.H. (2007). The high-frequency response of exchange rates and interest rates to macroeconomic announcements. Journal of Monetary Economics, 54, 1051–1068.
- Frenkel, J.A. (1976). A Monetary Approach to the Exchange Rate: Doctrinal Aspects and Empirical Evidence. Scandinavian Journal of Economics, 78 (2), 200–224.[Crossref]
- Kamruzzaman, J. & Sarker, R.A. (2004). ANN based forecasting of foreign currency exchange rates. Neural Information Processing – Letters and Reviews, 3 (2), 49–58.
- IOSCO (2011). International Organization of Securities Commissions, Regulatory issues raised by the impact of technological changes on market integrity and efficiency. Consultation report by the Technical Committee of the IOSCO, CR02/11, July 2011.
- Lee, S. (2010). High-frequency trading in FX: open for business. Aite Group Impact Note, April.
- Meese, R.A. & Rogoff, K.S. (1983). Empirical exchange rate models of the seventies. Do they fit out of sample? Journal of International Economics, 14 (1–2), 3–24.[Crossref]
- Mussa, M. (1976). The Exchange Rate, the Balance of Payments and Monetary and Fiscal Policy under a Regime of Controlled Floating. Scandinavian Journal of Economics, 78(2), 229–248.[Crossref]
- Opalski, K., Kacprzak, K., Maciejczyk, K. & Pawlowski, M. (2011). Modelowanie polskiego rynku energii elektrycznej. Uniwersytet Warszawski, Matematyka Stosowana, T. 1/54.
- Taylor, A.M. & Taylor, M.P. (2004). The purchasing power parity debate. The Journal of Economic Perspectives, 18, 135–158.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_foli-2015-0014