Warianty tytułu
Języki publikacji
Abstrakty
A compact K¨ahlerian manifoldM of dimension n satisfies hp,q(M) = hq,p(M) for each p, q.However, a compact complex manifold does not satisfy the equations in general. In this paper, we consider duality of Hodge numbers of compact complex nilmanifolds.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-08-10
zaakceptowano
2015-11-20
online
2015-12-07
Twórcy
autor
-
Department of Mathematics, Shimane University, Nishikawatsu-cho 1060, Matsue,
690-8504, Japan
Bibliografia
- [1] C. Benson and C. S. Gordon, K¨ahler and symplectic structures on nilmanifolds, Topology 27 (1988), 513–518.[Crossref]
- [2] S. Console and A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001), 111–124.[Crossref]
- [3] L.A. Cordero, M, Fern´andez and A. Gray, Symplectic manifolds with no K¨ahler structure, Topology 25 (1986), 375–380.[Crossref]
- [4] L.A. Cordero, M, Fern´andez, and L. Ugarte, Lefschetz complex conditions for complex manifolds, Ann. Global Anal. Geom. 22(2002), 355–373.
- [5] R. Goto, Moduli space of topological calibrations, Calami-Yau, hyperK¨ahler, G2, spin(7) structures, International Journal ofMathematices., 15 (2004), 211–257.
- [6] R. Goto, Deformations of holomorphic symplectic structures on nil and solvmanifolds (in Japanese), Proceeding of Workshopof Differential geometry in Osaka University, (2006), 54–64.
- [7] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106, (1989), 65–71.
- [8] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geom. 10 (1975), 85–112.
- [9] Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187–212.
- [10] S.M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333.
- [11] T. Yamada, Complex structures and non-degenerate closed 2-forms of compact real parallelizable pseudo-K¨ahler nilmanifolds,preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_coma-2015-0012