Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Tumor establishment and penetration consists of a series of complex processes involving multiple changes in gene expression and protein modification. Proteome changes of tumor tissue were investigated after intraperitoneal administration of a high concentration of ascorbic acid in BALB/C mice implanted with CT-26 cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Eighteen protein spots were identified whose expression was different between control and ascorbic acid treatment groups. In particular, eukaryotic translation initiation factor 3 subunit 1, nucleophosmin, latexin, actin-related protein 2/3 complex subunit 5, M2-type pyruvate kinase, vimentin, tumor protein translationally-controlled 1, RAS oncogene family Ran, plastin 3 precursor, ATPase, Rho GDT dissociation inhibitor β, and proteasome activator subunit 2 expression were quantitatively up-regulated. The increase in the level of these proteins was accompanied by an increase in mRNA level. The cytoskeleton protein actin, vimentin, and tumor protein translationally-controlled 1 showed quantitative expression profile differences. A change in actin cytoskeleton distribution, functionally relevant to the proteome result, was observed after treatment with ascorbic acid. These results suggest a previously undefined role of ascorbic acid in the regulation of cytoskeleton remodeling in tumor tissues.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.62-76,fig.,ref.
Twórcy
autor
- Department of Applied Chemistry, Dongduk Women’s University, 23-1 Wolgok-dong, Sungbuk-ku, Seoul 136-714, Korea
autor
autor
autor
autor
autor
autor
Bibliografia
- 1. Padayatty, S.J., Sun, H., Wang, Y., Riordan, H.D., Hewitt, S.M., Katz, A., Wesley, R.A. and Levine, M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med. 140 (2004) 533-537.
- 2. Bram, S., Froussard, P., Guichard, M., Jasmin, C., Augery, Y., SinoussiBarre, F. and Wray, W. Ascorbic acid preferential toxicity for malignant melanoma cells. Nature 284 (1980) 629-631.
- 3. Bruchelt, G., Baader, L., Reith, A.G., Holger, N.L., Gebhardt, S. and Niethammer, D. Rationale for the use of ascorbic acid in neuroblastoma therapy. Human Neuroblastoma Newark: Harwood Academic Publishers (1993) 34-40.
- 4. Fujinaga, S., Sakagami, H., Kuribayashi, N., Takayama, H., Amano, Y., Sakagami, T. and Takeda, M. Possible role of hydrogen peroxide in apoptosis induction by ascorbic acid in human myelogenous leukemic cell lines. Showa University Journal of Medical Sciences 6 (1994) 135-144.
- 5. De Laurenzi, V., Melino, G., Savini, I., Annicchiarico-Petruzzelli, M., Finazzi-Agro, A. and Avigliano, L. Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines. Eur. J. Cancer 31A (1995) 463-466.
- 6. Park, C.H. Biological nature of the effect of ascorbic acids on the growth of human leukemic cells. Cancer Res. 45 (1985) 3969-3973.
- 7. Park, C.H., Kimler, B.F., Bodensteiner, D., Lynch, S.R. and Hassanein, R.S. In vitro growth modulation by L-ascorbic acid of colony-forming cells from bone marrow of patients with myelodysplastic syndromes. Cancer Res. 52 (1992) 4458-4466.
- 8. Park, S., Han, S.S., Park, C.H., Hahm, E.R., Lee, S.J., Park, H.K., Lee, S.H., Kim, W.S., Jung, C.W., Park, K., Riordan, H.D., Kimler, B.F., Kim, K. and Lee, J.H. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxidemediated mechanisms. Int. J. Biochem. Cell. Biol. 36 (2004) 2180-2195.
- 9. Fidler, I.J. Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother. Pharmacol. 43 (1999) S3-S10.
- 10. Mignatti, P. and Rifkin, D.B. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73 (1993) 161-195.
- 11. Rath, M. and Pauling, L. Plasmin-induced proteolysis and the role of apoprotein(a), lysine and synthetic analogs. J. Orthomolecular Med. 7 (1992) 17-23.
- 12. Roomi, M.W., Roomi, N.W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A. and Rath, M. Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague-Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract. Breast Cancer Res. 7 (2005) R291-R295.
- 13. Kohn, E.C. Development and prevention of metastasis. Anticancer Res. 13 (1993) 2553-2559.
- 14. Wybieralska, E., Koza, M., Sroka, J., Czyz, J. and Madeja, Z. Ascorbic acid inhibits the migration of Walker 256 carcinosarcoma cells. Cell. Mol. Biol. Lett. 13 (2008) 103-111.
- 15. Meadows, G.G., Pierson, H.F. and Abdallah, R.M. Ascorbate in the treatment of experimental transplanted melanoma. Am. J. Clin. Nutrit. 54 (1991) 1284S-1291S.
- 16. Taper, H.S., Jamison, J.M., Gilloteaux, J., Summers, J.L. and Calderon, P.B. Inhibition of the development of metastases by dietary vitamin C:K3 combination. Life Sci. 75 (2004) 955-967.
- 17. Taper, H.S., Jamison, J.M., Gilloteaux , J., Gwin, C.A., Gordon, T., and Summers, J.L. In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K3. J. Histochem. Cytochem. 49 (2001) 109-119.
- 18. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D. and Gabbiani, G. A monoclonal antibody against α-smooth muscle actin: A new probe for smooth muscle differentiation. J. Cell Biol. 103 (1986) 2787-2796.
- 19. Van Muijen, G.N.P., Ruiter, D.J. and Warnaar, S.O. Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab. Invest. 57 (1987) 359-369.
- 20. Goddard, M.J., Wilson, B. and Grant, J.W. Comparison of commercially available cytokeratin antibodies in normal and neoplastic adult epithelial and non-epithelial tissues. J. Clin. Pathol. 44 (1991) 660-663.
- 21. Kobayashi, N. and Mundel, P. A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res. 91 (1998) 163-174.
- 22. Duncan, J.E. and Warrior, R. The cytoplasmic dynein and kinesin motors have interdepedent roles in pattering the Drosophila oocyte. Curr. Biol. 12 (2002) 1982-1991.
- 23. Lechner, A., Leech, C.A., Abraham, E.J., Nolan, A.L. and Habener, J.F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun. 293 (2002) 670-674.
- 24. Yang, S.H., Kim, J.S., Oh, T.J., Kim, M.S., Lee, S.W., Woo, S.K., Cho, H.S., Choi, Y.H., Kim, Y.H., Rha, S.Y., Chung, HC. and An, S.W. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. Int. J. Oncol. 22 (2003) 741-750.
- 25. Gruber, H.E., Tewfik, H.H. and Tewfik, F.A. Cytoarchitecture of Ehrlich ascites carcinoma implanted in the hind limb of ascorbic acid-supplemented mice. Eur. J. Cancer. 16 (1980) 441-448.
- 26. Bommer, U.A. and Thiele, B.J. The translationally controlled tumor protein (TCTP). Int. J. Biochem. Cell. Biol. 36 (2004) 379-385.
- 27. Bommer, U.A., Borovjagin, A.V., Greagg, M.A., Jeffrey, I.W., Russell, P., Laing, K.G., Lee, M. and Clemens, M.J. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8 (2002) 478-496.
- 28. Nielsen, H.V., Johnsen, A.H., Sanchez, J.C., Hochstrasser, D.F. and Schiotz, P.O. Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy 53 (1998) 642-652.
- 29. Teshima, S., Rokutan, K., Nikawa, T. and Kishi, K. Macrophage colonystimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J. Immunol. 161 (1998) 6356-6366.
- 30. Thiele, H., Berger, M., Skalweit, A. and Thiele, B.J. Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumor protein (TCTP). Eur. J. Biochem. 267 (2000) 5473-5481.
- 31. Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T. and Bommer, U.A. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell. Sci. 112 (1999) 1257-1271.
- 32. Yarm, F.R. Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell. Biol. 22 (2002) 6209-6221.
- 33. Yoon, T., Jung, J., Kim, M., Lee, K.M., Choi, E.C. and Lee, K. Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch. Biochem. Biophys. 384 (2000) 379-382.
- 34. Sinha, P., Kohl, S., Fischer, J., Hütter, G., Kern, M., Köttgen, E., Dietel, M., Lage, H., Schnölzer, M. and Schadendorf, D. Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis 21 (2000) 3048-3057.
- 35. Walker, D.J., Pitsch, J.L., Peng, M.M., Robinson, B.L., Peters, W., Bhisutthibhan, J. and Meshnick, S.R. Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob. Agents Chemother. 44 (2000) 344-347.
- 36. Thaw, P., Baxter, N.J., Hounslow, A.M., Price, C., Waltho, J.P. and Craven, C.J. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat. Struct. Biol. 8 (2001) 701-704.
- 37. Li, F., Zhang, D. and Fujise, K. Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276 (2001) 47542-47549.
- 38. Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. USA 99 (2002) 14976-14981.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-7df28cd7-9628-4c54-916c-36086c93dee4