Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 51 | 3 |
Tytuł artykułu

Isolation and molecular characterization of the porcine SLC6A14 gene excludes it as a candidate gene for fat deposition and growth

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gene encoding solute carrier family 6 member 14 (SLC6A14) has been considered as a candidate gene affecting human obesity. In this study, full-length cDNA (2237 bp) and DNA sequence (24 541 bp) of the porcine SLC6A14 gene were isolated. The porcine SLC6A14 cDNA contains a 5'-untranslated region of 57 bp, a 3' -untranslated region of 254 bp, and an open reading frame of 1926 bp, encoding a deduced protein of 642 amino acids with a molecular mass of 72. 475 kDa and an isoelectric point of 7.82. The genomic structure of the porcine SLC6A14 gene is similar to mammalian orthologs, particularly in terms of exon size and exon/intron boundaries. It comprises 14 exons and 13 introns. A semi-quantitative RT-PCR showed that the porcine SLC6A14 mRNA expression was tissue-specific. Four SLC6A14 single-nucleotide polymorphisms (SNPs) were identified, and 3 informative SNPs were chosen for genotvping in a White Duroc × Erhualian resource population with phenotvpe data of growth and fatness traits. The association analysis showed that the c. 1438 G>A nonsynonymous polymorphism was associated with birth weight and 21-day body weight (P < 0.05), while g.7944 A>T was associated with 46-day body weight. Linkage and radiation hybrid mapping assigned SLC6A14 to a region around SW1522 on SSCXp13, which did not fall in the confidence interval of the quantitative trait locus (QTL) for growth and fatness traits on SSCX in the resource population. These results indicate that SLC6A14 is not a positional candidate gene for the QTL affecting fatness and growth traits in pigs.
Wydawca
-
Rocznik
Tom
51
Numer
3
Opis fizyczny
p.299-308,fig.,ref.
Twórcy
autor
  • Department of Life Sciences, Shangqui Normal University, Shangqui, China
  • College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
autor
  • Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
autor
  • Department of Life Sciences, Shangqui Normal University, Shangqui, China
autor
  • Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
autor
  • Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
autor
  • Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
autor
  • College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
autor
  • Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
Bibliografia
  • Battersby S, Ogilvie AD, Blackwood DHR, Shen S, Muqit MMK, Muir WJ, et al. 1999. Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3' untranslated region of the human serotonin transporter gene. J Neurochem 72: 1384-1388.
  • Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Boscher MY, Bourgeois F, et al. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol 33: 289-309.
  • Cepica S, Rohrer GA, Masopust M, 2002. Gene linkage mapping of the porcine chromosome X region harbouring QTL for fat deposition. In: XXVIII International Conference on Animal Genetics, Göttingen: 87-88.
  • Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H, 2003. Linkage and QTL mapping for Sus scrofa chromosome X. J Anim Breed Genet 120: 144-151.
  • Chen NH, Reith MEA, Quick MW, 2004. Synaptic uptake and beyond: the sodium and chloride-dependent neurotransmitter transporter family SLC6. Pflügers Arch-Eur J Physiol 447: 519-531.
  • Durand E, Boutin P, Meyre D, Charles MA, Clement K, Dina C, et al. 2004. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesitv in French Caucasians. Diabetes 53: 2483-2486.
  • Fukasawa KM, Li WH, Yagi K, Luo CC, Li SSL, 1986. Molecular evolution of mammalian lactate dehydrogenase-A genes and pseudogenes: association of a mouse-processed pseudogene with a B1 repetitive sequence. Mol Biol Evol 3: 330-342.
  • Guo YM, Mao HR, Ren J, Yan XM, Duan YY, Yang GC, et al. 2009. A linkage map of the porcine genome from a large-scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates. Anim Genet 40: 47-52.
  • Harlizius B, Rattink AP, de Koning DJ, Faivre M, Joosten RG, van Arendonk JAM, et al. 2000. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm Genom 11: 800-802.
  • Höglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R, 2005. The repertoire of solute carriers of family 6: Identification of new human and rodent genes. Biochem Biophys Res Commun 336: 175-189.
  • Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163.
  • Lande R, 1981. The minimum number of gene contributing to qualitative variation between and within populations. Genetics 99: 541-553.
  • Laspiur JP, Burton JL, Weber PSD, 2004. Amino acid transporters in porcine mammary gland during lactation. J Daily Sci 87: 3235-3237.
  • McCoard SA, Fahrenkrug SC, Alexander LJ, Freking BA, Rohrer GA, Wise TH, et al. 2002. An integrated comparative map of the porcine X chromosome. Anim Genet 33: 178-185.
  • Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigucs Y, Gruand J, et al. 2002. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol 34: 705-728.
  • Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, et al. 2001. Na+- and Cl- -coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physio 532: 297-304.
  • Niesler B, Frank B, Kapeller J, Rappold GA, 2003. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D, and HTR3E. Gene. 310: 101-111.
  • Öhman M, Oksanen L, Kaprio J, Koskenvuo M, Mustajoki P, Rissanen A. etal. 2000. Genome-wide scan of obesit) in Finnish sibpairs reveals linkage to chromosome Xq24. J Clin Endocrinol Metab 85: 3183-3190.
  • Rohrer GA, Keele JW, 1998a. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci 76: 2247-2254.
  • Rohrer GA, Keele JW, 1998b. Identification of quantitative trait loci affecting carcass composition in swine: II. Muscling and wholesale product yield traits. J Anim Sci 76: 2255-2263.
  • Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraic M, 2006. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Anim Genet 37: 17-27.
  • Sloan JL, Mager S, 1999. Cloning and functional expression of a human Na+ and Cl- -dependent neutral and cationic amino acid transporter B0+. J Biol Chem 274: 23740-23745.
  • Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T, et al. 2003. The SLC6A14 gene shows evidence of association with obesity. J Clin Invest 112: 1762-1772.
  • Wu L, Ueda T, Messing J, 1993. 3'-end processing of the maize 27 kDa zein mRNA. Plant J 4: 535-544.
  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, et al. 1998. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82: 182-188.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-0a3a0e53-7a8d-49a0-a20b-25ee6e260342
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.