Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 | 431–460
Tytuł artykułu

Vagueness and Formal Fuzzy Logic: Some Criticisms

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the common man reasoning the presence of vague predicates is pervasive and under the name “fuzzy logic in narrow sense” or “formal fuzzy logic” there are a series of attempts to formalize such a kind of phenomenon. This paper is devoted to discussing the limits of these attempts both from a technical point of view and with respect the original and principal task: to define a mathematical model of the vagueness. For example, one argues that, since vagueness is necessarily connected with the intuition of the continuum, we have to look at the order-based topology of the interval [0,1] and not at the discrete topology of the set {0,1}. In accordance, in switching from classical logic to a logic for the vague predicates, we cannot avoid the use of the basic notions of real analysis as, for example, the ones of “approximation“, “convergence“, “continuity“. In accordance, instead of defining the compactness of the logical consequence operator and of the deduction operator in terms of finiteness, we have to define it in terms of continuity. Also, the effectiveness of the deduction apparatus has to be defined by using the tools of constructive real analysis and not the one of recursive arithmetic. This means that decidability and semi-decidability have to be defined by involving effective limit processes and not by finite steps stopping processes.
Rocznik
Tom
26
Numer
4
Strony
431–460
Opis fizyczny
Daty
wydano
2017-12-15
Twórcy
  • Department of Mathematics, University of Salerno, Italy , gerla@unisa.it
Bibliografia
  • Belohlavek, R., 2002, “Fuzzy equational logic”, Arch. Math. Log. 41, 1: 83–90. DOI: 10.1007/s001530200006
  • Belohlavek, R., 2015, “Pavelka-style fuzzy logic in retrospect and prospect”, Fuzzy Sets and Systems 281: 61–72. DOI: 10.1016/j.fss.2015.07.007
  • Belohlavek, R., J.W. Dauben, G.J. Klir, 2017, Fuzzy Logic and Mathematics: A Historical Perspective, Oxford University Press (to appear). DOI: 10.1093/oso/9780190200015.001.0001
  • Belohlavek, R., and V. Vychodil, 2005, Fuzzy Equational Logic, Springer,Berlin, 2005. DOI: 10.1007/11376422_3
  • Belohlavek, R., and V. Vychodil, 2015, “A logic of graded attributes”, Arch. Math. Log. 4, 7–8: 785–802. DOI: 10.1007/s00153-015-0440-0
  • Belohlavek, R., G.J. Klir, H.W. Lewis III, E.C. Way, 2009, “Concepts and fuzzy sets: Misunderstandings, misconceptions, and oversights”, International Journal of Approximate Reasoning 51, 1: 23–34. DOI: 10.1016/j.ijar.2009.06.012
  • Biacino, L.G., G. Gerla, 2002, “Fuzzy logic, continuity and effectiveness”, Archive for Mathematical Logic 41, 7: 643–667. DOI: 10.1007/s001530100128
  • Carotenuto, G., G. Gerla, 2013, “Bilattices for deductions in multi-valued logic”, International Journal of Approximate Reasoning 54, 8: 1066–1086. DOI: 10.1016/j.ijar.2013.04.004
  • Cintula, P., and P. Hájek, 2010, “Triangular norm based predicate fuzzy logics”, Fuzzy Sets and Systems 161, 3: 311–346. DOI: 10.1016/j.fss.2009.09.006
  • Entemann, C.W., 2002, “Fuzzy logic: Misconceptions and clarifications”, Artificial Intelligence Review 17: 65–84.
  • Genito, D., G. Gerla, 2014, “Connecting bilattice theory with multivalued logic”, Logic and Logical Philosophy 23, 1: 15-45. DOI: 10.12775/LLP.2013.036
  • Gerla, G., 1982, “Sharpness relation and decidable fuzzy sets”, IEEE Trans. on Automatic Control, AC-27, 5: 1113. DOI: 10.1109/TAC.1982.1103075
  • Gerla, G., 2000, Fuzzy logic: Mathematical tools for approximate reasoning, Trends in Logic, Kluwer Ac. Press. DOI: 10.1007/978-94-015-9660-2
  • Gerla, G., 2005, “Fuzzy logic programming and fuzzy control”, Studia Logica 79, 2: 231–254. DOI: 10.1007/s11225-005-2977-0
  • Gerla, G., 2006, “Effectiveness and multi-valued logics”, Journal of Symbolic Logic 71, 1: 137–162. DOI: 10.2178/jsl/1140641166
  • Gerla, G., 2007, “Multi-valued logics, effectiveness and domains”, pages 336–347 in Computation and Logic in the Real World, Lecture Notes in Computer Science 4497, Springer. DOI: 10.1007/978-3-540-73001-9_35
  • Gerla, G., 2016,“Comments on some theories of fuzzy computation”, International Journal of General Systems 45, 4: 372–392. DOI: 10.1080/03081079.2015.1076403
  • Goguen, J.A., 1968/1969, “The logic of inexact concepts”, Synthese 19, 3–4: 325–373. DOI: 10.1007/BF00485654
  • Gottwald, S., 2008, “Mathematical fuzzy logic”, The Bulletin of Symbolic Logic 14, 2: 210–239. DOI: 10.2178/bsl/1208442828
  • Hájek, P., 1995, “Fuzzy logic and arithmetical hierarchy”, Fuzzy Sets and Systems 73, 3: 359–363. DOI: 10.1016/0165-0114(94)00299-M
  • Hájek, P., 1998, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht. DOI: 10.1007/978-94-011-5300-3
  • Hájek, P., 1999, “Ten questions and one problem on fuzzy logic”, Annals of Pure and Applied Logic 96, 1–3: 157–165. DOI: 10.1016/S0168-0072(98)00037-2
  • Hájek, P., 2006, “What is mathematical fuzzy logic?”, Fuzzy Sets and Systems 157, 5: 597–603. DOI: 10.1016/j.fss.2005.10.004
  • Hájek, P., and V. Novák, 2003, “The Sorites paradox and fuzzy logic”, International Journal of General Systems 32, 4: 373–383. DOI: 10.1080/0308107031000152522
  • Kamp, H., 1975, “Two theories of adjectives”, pages 123–155 in E. Keenan (ed.), Formal Semantics of Natural Languages, Cambridge University Press. DOI: 10.1017/CBO9780511897696.011
  • Montagna, F., 2001, “Three complexity problems in quantified fuzzy logic”, Studia Logica 68, 1: 143–152. DOI: 10.1023/A:1011958407631
  • Novák, V., 1990a, “On the syntactico-semantical completeness of first-order fuzzy logic. Part I: Syntax and Semantics”, Kybernetika 26: 47–66.
  • Novák, V., 1990b, “On the syntactico-semantical completeness of first-order fuzzy logic. Part II: Main results”, Kybernetika 26: 134–154.
  • Novák, V., 2005, “Are fuzzy sets a reasonable tool for modeling vague phenomena?”, Fuzzy Sets and Systems 156, 3: 341–348. DOI: 10.1016/j.fss.2005.05.029
  • Parikh, R., 1991, “A test for fuzzy logic”, Sigact News 22, 3: 49–50. DOI: 10.1145/126537.126542
  • Pavelka, J., 1979a, “On fuzzy logic I: Many-valued rules of inference”, Zeitschr. F. math. Logik und Grundlagen d. Math. 25, 3–6: 45–52. DOI: 10.1002/malq.19790250304
  • Pavelka, J., 1979b, “On fuzzy logic II: Enriched residuated lattices and semantics of propositional calculus”, Zeitschr. F. math. Logik und Grundlagen d. Math. 25, 7–12: 119–134. DOI: 10.1002/malq.19790250706
  • Pavelka, J., 1979c, “On fuzzy logic III: Semantical completeness of some many-valued propositional calculi”, Zeitschr. F. math. Logik und Grundlagen d. Math. 25, 25–29: 447-464. DOI: 10.1002/malq.19790252510
  • Pelletier, F.J., 2000, “Review of Metamathematics of Fuzzy Logic by P. Hájek”, The Bulletin of Symbolic Logic 6: 342–346.
  • Pelletier, F.J., 2004, “On some alleged misconceptions about fuzzy logic”, Artificial Intelligence Review 22, 1: 71–82. DOI: 10.1023/B:AIRE.0000044308.48654.c1
  • Rogers, H.,1967, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York.
  • Sauerland, U., 2011, “Vagueness in language: The case against fuzzy logic revisited”, pages 185–198 in P. Cintula, C. Fermüller, L. Godo, and P. Hájek (eds.), Understanding Vagueness: Logical, Philosophical, and Linguistic Perspectives, Studies in Logic 36, College Publications, London, UK.
  • Sorensen, R., 2001, Vagueness and Contradiction, Clarendon Press, Oxford.
  • Tabacchi, M.E., and S. Termini, 2017a, “Back to ‘reasoning’”, pages 471–478 in M.B. Ferraro et al. (eds.), Soft Methods for Data Science, Advances in Intelligent Systems and Computing 456, Springer, Switzerland. DOI: 10.1007/978-3-319-42972-4_58
  • Tabacchi, M.E., and S. Termini, 2017b, “Fuzziness as an experimental science: An homage to Claudio Moraga”, pages 41–54 in R. Seising and H. Allende-Cid (eds.), Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing, Studies in Fuzziness and Soft Computing, Springer, Switzerland. DOI: 10.1007/978-3-319-48317-7_4
  • Termini, S., 2002, “On some vagaries of vagueness and information”, Annals of Mathematics and Artificial Intelligence 35: 343–355.
  • Trillas, E., 2006, “On the use of words and fuzzy sets”, Information Sciences 176, 11: 1463–1487. DOI: 10.1016/j.ins.2005.03.008
  • Turunen, E., 1999, Mathematics Behind Fuzzy Logic, Springer, Heidelberg.
  • Vojtáš, P., 2001, “Fuzzy logic programming”, Fuzzy Sets and Systems 124: 361–370.
  • Zadeh, L.A., 1965, “Fuzzy sets”, Information and Control 8, 3: 338–353. DOI: 10.1016/S0019-9958(65)90241-X URL: https://people.eecs.berkeley.edu/~zadeh/papers/Fuzzy%20Sets-1965.pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-ff7c5b88-ab0c-431a-b775-8c70148f3bca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.