Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 3 | 1 | 1.1-1.12
Tytuł artykułu

Comparison of the Suitability of Contiguous Fallow-forest Lands for Cassava, Yam, Cocoyam and Sweet Potato Production in Nsukka, Southeastern Nigeria

Treść / Zawartość
Warianty tytułu
RU
Сравнение пригодности смежных лесных участков, вспаханных под пар, для выращивания культур маниока, батат, кокосового ямса и сладкого картофеля в провинции Nsukka, юго-восточная Нигерия
Języki publikacji
EN
Abstrakty
EN
This analysis compared the suitability of contiguous fallow-forest lands for cassava, yam, cocoyam and sweet potato production in Nsukka, south-eastern Nigeria. The fallow plots were brought into cultivation in 1998 under the IITA-UNN long-term collaborative research. The sole cassava plots were grown to cassava only continuously for five years and then left to fallow. Soil samples were collected from 0-20 cm depth in triplicates using an auger and core sampler from the seven representative fallow plots previously grown to sole cassava from 1998–2003 and under fallow till date as well as the adjacent forest land. The objective was to use the soil qualities as recovered during the fallow period and those from the original adjacent forest to determine their current suitability for the production of the four crops. Using the FAO’s principle of limiting conditions revealed that after 13 yrs of fallow, the plots grown to sole cassava was classified as highly suitable (S1) for sweet potato production but moderately suitable (S2) for cassava, yam and cocoyam production. The remnant forest land was highly suitable for sweet potato production but moderately suitable for cassava, yam and cocoyam production. The dominant soil limitations are organic matter, low cation exchange capacity and exchangeable potassium for both cassava and yam production. The major limitations to cocoyam production are low available phosphorous, base saturation and soil pH. If these constraints are addressed adequately by soil nutrient management programmes all the plots will scale up to S1 class for the four crops.
RU
Данное исследование сравнивало пригодность смежных возделанных лесных участков для выращивания маниоки, батата, кокосового ямса и сладкого картофеля в провинции Nsukka, юго-восточная Нигерия. Болотные участки были культивированы в 1998 году в рамках долгосрочного совместного исследования IITA-UNN. Участки использовались только для выращивания маниоки в течение пяти лет, а затем их оставляли под паром. Образцы почвы были собраны с глубины 0-20 см в трех экземплярах с использованием бура и керноотборника на семи возделанных участках-образцах, ранее используемых для выращивания только маниоки в 1998-2003 и находящихся под паром до настоящего времени, а также на прилегающих лесных участках. Цель состояла в том, чтобы исследовать свойства почвы данных участков восстанавливаться в период нахождения по паром, а также свойства почвы прилегающих лесных участков с целью определения их пригодности для текущего производства четырех культур. Использование принципа FAO предельных условий показало, что после 13 лет парования, участки, используемые для выращивания только маниоки, классифицировались как очень подходящие (S1) для выращивания сладкого картофеля, но умеренно подходящие (S2) для маниоки, батата и кокосового ямса. Остальные лесные угодья очень хорошо подходили для выращивания сладкого картофеля, но умеренно подходили для выращивания маниоки, батата, кокосового ямса. Доминирующими ограничениями почвы являются органические вещества, низкая емкость катионного обмена и обменный калий, как для выращивания маниоки, так и батата. Основными ограничениями для производства кокосового ямса являются низкое содержание фосфора, насыщенность почвы и уровень рН почвы. Если эти ограничения надлежащим образом учитываются программами обработки почвы питательными веществами, все участки будут масштабироваться до класса S1 для четырех культур.
Czasopismo
Rocznik
Tom
3
Numer
1
Strony
1.1-1.12
Opis fizyczny
Daty
wydano
2017-01-26
Twórcy
  • University of Nigeria, Department of Soil Science, Nigeria
  • International Institute of Tropical Agriculture, Nigeria
  • University of Nigeria, Department of Soil Science, Nigeria
autor
  • University of Nigeria, Department of Soil Science, Nigeria
autor
  • University of Nigeria, Department of Soil Science, Nigeria
Bibliografia
  • Adesodun, J. K, Adeyemi, E. F., & Oyegoke, C. O. (2007). Distribution of nutrient elements within water-stable aggregates of two tropical agro ecological soils under different land uses. Soil and Tillage Research, 92, 190–197. doi: 10.1016/j.still.2006.03.003
  • Ahmed, H. (2002). Assessment of Spatial Variability of Some Physicochemical Properties of Soils under Different Elevations and Land Use Systems in the Western Slopes of Mount Chilalo, Arsi (Master’s thesis, Alemaya University). Ethiopia.
  • Akamigbo, F. O. R, & Asadu, C. L. A. (2001). The influence of parent materials on the soils of Southeastern Nigeria. East African Agriculture and Forest Journal, 48, 81–91.
  • Akamigbo, F. O. R. (1984). The accuracy of field textures in a humid tropical environment. Soil Survey and Land Evaluation, 4, 63–70.
  • Akamigbo, F. O. R. (1999). Influence of land use on soil properties of the humid tropical agroecology of Southeastern Nigeria. Nigerian Agriculture Journal, Vol. 30, 59–76.
  • Akinrinde, E. A., & Obigbesan, G. O. (2000). Evaluation of fertility status of selected soils for crop production in five ecological areas of Nigeria. In 26th Annual Conference Soil Science (pp. 279–288). Ibadan: n. d.
  • Alexandra, M., Charles, R., Jeangros, B., & Sinaj, S. (2013). Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: Results of a 12-year experiment in Changins, Switzerland. Soil and Tillage Research, 126, 11–18. doi: 10.1016/j.still.2012.07.012
  • Allen, V. B., & Pilbeam, D. J. (Eds.). (2007). Handbook of Plant Nutrition. NW: CRC Press.
  • Aluko, A. P., & Fagbenro, J. A. (2000). The role of tree species and land use systems in organic matter and nutrient availability in degraded Ultisol of Onne, Southeastern Nigeria. In 26th Annual Conference Soil Science (pp. 220–236). Ibadan: n. d.
  • Asadu, C. L. A., & Akamigbo, F. O. R. (1990). Relative contributions of organic matter and clay fractions to cation-exchange capacity (CEC) of soils in Southeastern Nigeria. Samaru: Journal of Agriculture Research, 7, 17–23.
  • Asadu, C. L. A., Nwafor, I. A., & Chibuike, G. U. (2015). Contributions of microorganisms to soil fertility in adjacent forest, fallow and cultivated land use types in Nsukka, Nigeria. International Journal Agriculture & Forestry, 5(3), 199–204. Retrieved from http://article.sapub.org/10.5923.j.ijaf.20150503.04.html
  • Asadu, C. L. A, Obasi, S. C., & Dixon A. G. O. (2010). Variations in soil physical properties in a cleared forestland continuously cultivated for seven years in eastern Nsukka, Nigeria. Communications in Soil Science and Plant Analysis, 41(2), 123–132. doi: 10.1080/00103620903426931
  • Asadu, C. L. A. (1990). A Comparative characterization of two foot-slope soils in Nsukka area of Eastern Nigeria. Soil Science, 150, 527–534.
  • Asadu, C. L. A., & Ekeleman, L. D. (2014). The effects of continuous cropping and fallowing on the chemical properties of an ultisol in Nsukka, Nigeria. Agro-Science, 12(2), 1–28. doi: 10.4314/as.v12i2.4
  • Asadu, C. L. A., Diels, J., & Vanluawe, B. (1997). A comparison of the contributions of clay, silt and organic matter to the effective CEC of soils in sub-Saharan Africa. Soil Science, 162, 785-794. doi: 10.1097/00010694-199711000-00003
  • Asadu, C. L. A., Dixon, A. G. O., & Okechukwu, R. (2002). Comparative evaluation of the contribution of soil physicochemical properties to variations in the yield of four major staple food crops in eastern Nigeria. Soil Tillage Research, 65, 141–155. doi: 10.1016/s0167-1987(01)00276-8
  • Asadu, C. L. A., Obasi, S. C., Dixon, A. G. O., Ugele, N., & Chibuike, G. U. (2013). Soil fertility recovery in cleared forestland cultivated and fallowed for seven years. Journal of Agriculture and Biodiversity Research, 2(5), 110–116. Retrieved from http://onlineresearchjournals.org/JABR/pdf/2013/jul/Asadu%20et%20al..pdf
  • Awotoye, O. O., Ogunkunle, C. O., & Adeniyi, S. A. (2011). Assessment of soil quality under various land use practices in a humid agro-ecological zone of Nigeria. African Journal of Plant Science, 5(10), 565–569. Retrieved from http://www.academicjournals.org/article/article1380095760_Awotoye%20et%20al.pdf
  • Blake, G. R., & Hartge, K. H. (1965). Bulk density . In C. A. Black (Ed.), Methods of Soil Analysis (Part 1, Physical and mineralogical properties, including statistics of measurement and sampling, pp. 363–382). Madison: American Society of Agronomy, Crop Science Society of America : Soil Science Society of America.
  • Brady, N. C., & Weil, R. R. (2010). Elements of the nature and properties of soils. N. J.: Pearson Prentice Hall.
  • Bremner, J. M. (1965). Inorganic forms of nitrogen. Agronomy, 9, 1179–1237.
  • Chapman, H. D. (1965). Cation exchange capacity. In C. A. Black (Ed.), Methods of Soil Analysis (Part 1, Physical and mineralogical properties, including statistics of measurement and sampling, pp. 891–901). Madison: American Society of Agronomy, Crop Science Society of America : Soil Science Society of America.
  • Cronan, C. S., & Grigal, D. F. (1995). Use of Calcium/Aluminum Ratios as Indicators of Stress in Forest Ecosystems. Journal of Environmental Quality, 24(2), 209. doi: 10.2134/jeq1995.00472425002400020002x
  • Donahue, R. L, Miller, R. W., Schickluna, J. C. (1977). Soils: An introduction to soils and plant growth. N. J.: Prentice-Hall.
  • Ezeaku, P. I., Alaci, D. (2008). Analytical situations of land degradation and sustainable management strategies in Africa. Journal of Agriculture & Social Science, 4, 42–52.
  • Ezeaku, P. I., (2011). Sustainable Soil Management and Productivity. Nsukka: Great AP Express Publishers ltd.
  • Food and Agricultural Organization of the United Nation. (1976). A Framework for Land Evaluation. Retrieved from http://www.fao.org/docrep/X5310E/x5310e00.htm
  • Food and Agricultural Organization of the United Nation. (1995). Guidelines for Land Evaluation for Rainfall Agriculture. Retrieved from http://www.fao.org/docrep/003/x6083f/x6083f00.htm
  • Food and Agricultural Organization of the United Nation. (2014). World Reference Base for Soil Resources. Retrieved from http://www.fao.org/3/a-i3794e.pdf
  • Food and Agricultural Organization of the United Nation. (2006). Guidelines for Soil Description (4th ed.). Retrieved from http://www.fao.org/docrep/019/a0541e/a0541e.pdf
  • Food and Agricultural Organization of the United Nation. (2013). FAO STAT. Retrieved July 7, 2016, from http://faostat3.fao.org/home/index.html#DOWNLOAD.
  • Food and Agricultural Organization of the United Nation. (2002). Land and agriculture: A Compendium of recent sustainable development initiatives in the field of agriculture and land management. Retrieved from ftp://ftp.fao.org/agl/agll/docs/landandagric.pdf
  • Food and Agricultural Organization of the United Nation. (2012). FAOSTAT Nigeria. Retrieved March 18, 2016, from http://www.fao.org/faostat/en/#country/159
  • Fetter, C. W. (1994). Applied Hydrogeology. London: Prentice-Hall.
  • Gee, G. W., & Bauder, J. W. (1965). Particle-size analysis. In C. A. Black (Ed.), Methods of Soil Analysis (Part 1, Physical and mineralogical properties, including statistics of measurement and sampling, pp. 383). Madison: American Society of Agronomy, Crop Science Society of America : Soil Science Society of America.
  • The Humanity Development Library. (2016). Tonnia (Xanthosoma spp.) and Taro (Colocasia esculenta). Retrieved from https://goo.gl/YGr8L9
  • Ikeorgu J. E. G. (2003). Effect of size and spacing of minitubers on yield of three selected yam cultivars in the humid tropics of Nigeria. Nigerian Agricultural Journal, 34, 58–62. doi: 10.4314/naj.v34i1.3170
  • Jackson, M. L. (1958). Soil chemistry analysis. London: London Constable.
  • Klute, A., & Dirksen, C. (1965). Hydraulic conductivity and diffusivity. In C. A. Black (Ed.), Methods of Soil Analysis (Part 1, Physical and mineralogical properties, including statistics of measurement and sampling, pp. 694-783). Madison: American Society of Agronomy, Crop Science Society of America : Soil Science Society of America.
  • Landon, J. R. (Ed.). (1984). Booker tropical soil manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. London: Booker Agriculture International.
  • Marler, J. B., & Wallin, J. R. (2006). Human health, the nutritional quality of harvested food and sustainable farming. Bellevue: Nutrition Security Institute. Retrieved from http://www.nutritionsecurity.org/PDF/NSI_White%20Paper_Web.pdf
  • Oguike P. C., Mbagwu, J. S. C. (2009). Variations in some physical properties and organic matter content of soils of coastal plain sand under different land use types. World Journal of Agricultural Science, 5(1), 63–69. Retrieved from https://www.idosi.org/wjas/wjas5(1)/9.pdf
  • Oko-ibom, G. O., Asiegbu, J. E., (2006). Growth and yield responses of rainy season field tomatoes to timing and splitting of fertilizer application. Journal of Agriculture, Food, Environment and Extension, 5(1), 17–25. doi: 10.4314/as.v5i1.1540
  • Omotoso, T. I. (1973). Factors guiding the determination of phosphorus fertilizer requirements of cocoa growing soils in Western Nigeria. Retrieved from https://goo.gl/26O2XI
  • Reddy, R. S., Shiva Prasad, C. R. (1999). Characterization and evaluation of potato growing soils of Karnataka. Journal of the Indian Society of Soil Science, 47, 525–532.
  • Rhoades, J. D. (1982). Cation Exchange Capacity. In: A. Page (Ed.), Methods of Soil Analysis (Part 2, Chemical and microbiological properties, 2nd ed., pp. 149-157). Madison: American Society of Agronomy, Crop Science Society of America : Soil Science Society of America.
  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In. D. L. Sparks et al. (Eds.), Methods of Soil Analysis: Chemical Methods (Part 3, pp. 417–435). Madison: ASA, SSSA.
  • Riue, M., Sposito, G. (1991). Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Science Society of America Journal, 55, 1231–1238. doi: 10.2136/sssaj1991.03615995005500050006x
  • Selassie. Y, Anemut and Addisus (2015). The effects of land use types, management practices and slope classes on selected soil physico-chemical properties in Zikre watershed, North-Western Ethiopia. Environmental Systems Research, 4(1). doi: 10.1186/s40068-015-0027-0
  • Styger, E., & Fernandes, E. C. M. (2006). Contributions of managed fallows to soil fertility recovery. In N. Th. Uphoff (Ed.), Biological Approaches to Sustainable Soil Systems (pp. 425–437). Boca Raton: CRC/Taylor&Francis.
  • Sys, C. (1985). Land Evaluation. Brussel: Algemeen Bestuur van de Ontwikkelingssamenwerking.
  • Van Reeuwijk, L. P. (1992). Procedures for soil analysis (, 3rd ed.). Wageningen: International Soil Reference and Information Center.
  • Stroosnijder, L., Sterk, G., & Bewket, W. (2003). Towards Integrated Watershed Management in High land Ethiopia: the Chemoga watershed case study (Doctoral thesis). Retrieved from https://goo.gl/8ZXDOQ
  • Yakubu, M., Baraya, S., & Noma, S. S. (2007). Assessment of soil and water quality along river Kadarko in Sanyinna District, Sokoto State. In W. A. Hassan et al. (Eds.), Mobilizing agricultural research towards attaining food security and Industrial growth in Nigeria. Proceedings of the 45th Annual Conference of the Agriculture Society of Nigeria.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-f6a1f870-936d-497f-b676-8ef3b53fa768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.