INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol.p 237247

ELIMINATION OF TASK STARVATION IN CONFLICTLESS
SCHEDULING CONCEPT

MATEUSZ SMOLINSKI

Ingtitute of Information Technology, Lodz University of Technology

New concept of conflictless task scheduling is légraative approach to existing
solutions in concurrency. Conflictless task schieduincludes data structures and
algorithm that prevents occurrence of resource licbrifetween tasks executed in
parallel. The range of applications the conflictléssk scheduling includes different
environments like transactions processing in dambmanagement systems,
scheduling of processes or threads in operatingeisyss or business processes
management. Task scheduling without any resourodicts is dedicated to high
contention of limited resources environments asdigorithm can be implemented
in modern GPU. This paper presents concept of lbask scheduling without
resources conflicts occurrence, discusses featfrasw approach and focuses on
problem of task starvation. Elimination of taskrgtdion is included in conflictless
task scheduling concept, detailed explanation an¢ained in this paper.

Keywords: Resource conflict elimination, conflicteé task schedule, deadlock
avoidance, concurrency control, mutual exclusicamgaction processing, OLTP

1. Introduction

Resource conflict occurs in multitasking environmevhen many tasks
executed in parallel use the same instance of rescand at least one of them
perform operation, which changes this resourcee sttimination of negative
phenomenon as resource conflicts can be performedany ways, for example
using competitive or cooperative concurrency. Albncurrency methods

synchronize global resource allocation. In comptit concurrency various
synchronization mechanism can be used (i.e. semeghdocks or barriers),
however tasks do not communicate each other torrdete order of resource
allocation. A significant problem in competitive remurrency is proper selection
and correct application of synchronization mechanifor access to global
resources. Another problem is to choose fine orseograin strategy in resource
synchronization. In cooperative concurrency tagskaraunication is possible, also
dedicated structures can be used to store enviminrseate. Supervision
mechanism bases on task communication or dedicsttedtures that support
prevention of unsafe environment state [3, 5].

The elimination of resource conflict between exeduttasks ensures
avoidance of deadlock. But there is no universaickyonization method that
guarantees task execution without resource conificany environment. Even
when task specification is known, selection andpreper concurrency method are
not always apparent to programmer.

In next chapters concept of universal solution afflictless task scheduling
will be presented. This concept bases on dedicsttedtures and algorithms, that
guarantee fairness and liveliness in task procgsgithout resource conflicts. New
concept can be used in various environments of paskessing that meet fixed
assumptions. In further discussion a task stamagpimblem in conflictless task
scheduling has been examined.

2. Assumptionsfor conflictlesstask processing environment

Task processing environment has own specifics tirgurom the number of
task sources and characteristics of requested. tasksequested task is single unit
of work and is defined by sequence of operatiomsranources, which are required
to finish its execution. Resources required by tzmk be local or global. Resource
instance is local when is used by only one tasktlier case resource is global.

New concept of conflictless task scheduling is dawid to any high
contention environment that meets assumptionsefquested tasks:

» all resources required by requested task exists,

» set of all global resources required by requesisH is known before its
execution begins,

* many requested tasks can be executed in parallel,

e execution time for task is not known and its finishe is not limited,

* each task requires minimum one global resource,

» task are independent and its execution order i$ixeut,

» task execution is not depended on interaction extiernal objects,

238

» tasks are equivalent and there is no task prisritie

» number of global resources is limited and any dloksource has only one
instance.

In applied task definition single task with longyaence of operations can be
divided into many smaller sub-tasks, which havbdaequested by task source one
by another. This technique can be also used ferdntive task to isolate subtasks
that do not require any global resource. The raoigepplication of proposed
conflictless task scheduling includes various emvinents like scheduling of
processes or threads in operating systems, tréamsagrocessing systems
or business process environments. Regardless ofheof task in high-contention
environments each requested task reveals a spegifiesentation of all required
global resources before its execution begin andrtepfinish of execution.
Even task execution interrupted by error has teeperted to resume other waiting
conflicted tasks.

3. Task representation and resour ce conflict detection

The concept of conflictless task scheduling reguspecial task resources
representation model which is used to fast vetifica existence of resource
conflict between tasks. In presented concept abal resources required by task
are represented in its binary identifieRRV and IR, they are granted to task by
central resource controller. In those binary idesrs single bit represents only one
global resource, the length of resources idengifisrlimited by number of global
resources. This task resource representation itabdeal4]. Identifier IRW
represents all global resources used by task teatead or written in its sequence
of operations. HowevdR represents all global resources used by taslkatkainly
read. As opposite to write read operation do nange global resource state.
Besides of resources identifiers each request&d,taas assigned a logical tiriig
number. Order of logical time values representsusece of granting binary
resource identifiers by central resources contradi¢asks.

Detection of resource conflict between two tasksgigheir binary resource
identifiers requires to check simple condition:

(IRW and IRW) xor (IR and IR) #0 1)

If above condition is satisfied then exists at lease resource conflict
between tasks. This means that two task can naxbeuted in parallel and its
execution order must be determined. Logical timeescan be used to determine
sequence of conflicted task execution, longer waitask can be executed first.

239

4. Structuresfor conflictlesstask schedules generation

Controlling tasks execution without resource catsdlirequires to maintain
two sets: active task s® that are executed and waiting task ¥eétthat are
suspended. In anyth point in time active task s&' and waiting task sad" do
not have any common element$ n R'= @. Effective task processing requires
maximization of cardinality of the active task &tin any point of time. Resource
conflict detection between newly requested task ang active task and also
between suspended tasks is supported by dedicateduses task classés and
conflict arrayM. State of this structures may vary over time, tapesof task class
Cy in n-th point of time will be marke@", and respectively state of conflict array
in n-th point of time represenid". Single task class groups all tasks with the same
values of resources binary identifiers:

Ce= {t: IRW = IRV OIR = IR} @)

In n-th point in time task clas8", groups only supended tasks. If task from
classCy is executed (this task is included in &8 then clas<C' is marked as
active, but active taskl] C, n R" not belongs tC", O C,. Therefore im-th point
in time suspended task 34t =C" 0 ... O C"\. For any active clasg8"y there has
to be determined task cla€%, which includes oldest suspended t#skthat has
resource conflict with active tagk(d C,n R Each non-empty task class has its
own FIFO queue, which determines order of executibtheir suspended tasks.
Each FIFO queue is assigned to other resource geuesented by task class,
which has at least one task suspended. This nudties approach can be treated as
alternative to use many synchronization mechanissih coordination of
emptying their queues for waiting tasks.rith point of time cardinality of task
classn(C") show number of suspended tasks that are locatethssC", queue.
According to prepared conflictless schedule thé tHassC", queue leaves only
single the oldest waiting task, only if conditiariot satisfied:

IRW = IR, 3

If condition 3 is satisfied then all tasks from KadassC, queue can be
executed in parallel. The conflict arrdy is another structure, which stores
conflicts detected between task classes basesrdtition 1. If in two dimension
array valuem; = 0 then there is no conflict between tasks betango different
classe<C; andC;. Conflict arrayM is always symmetriéd = M', so only half of it
should be calculated. Dimension of arfglychanges every time when new task
class is added because imth point of time M"=g(R", C";, C", ...,C'\).

If dimension of arrayM changes then all conflict values must be calcdlate
between new added and any other existing task.clagbere is no resource

240

conflict between the new class and any other aatiass, then execution of task
from new class has begin and new class becomega@therwise new task is
suspended in class FIFO queue and is waiting tomresaccording to prepared
conflictless schedule of task execution.

5. Preparation of adaptive conflictless schedule

The conflicless task processing includes deternginathe task execution
order for waiting tasks, which ensures parallek taxecution without global
resource conflicts. Appropriate set of tasks igdiXby conflicless schedule, which
is adequate to task environment staten-th point in time number of conflictless
schedules to prepare is limited by cardinality ctive task seR" because time of
task execution is not known. The conflictless sciedhould be prepared to each
situation that execution of active tagkl R" finishes and requires to determine set
S, of suspended tasks that can be executed in pavatlebut resource conflicts.
Any task seS has to fulfill all conditions:

« all tasks belonging t8'has conflict with finished tas,

« no resource conflict between task belongin§f@nd any active task from
setR"/ {t},

« no resource conflict between task belonging't@nd the oldest suspended
taskt*, for any active task fror®" O {t,} or when resource conflict exists
between task belonging toS'yand oldest suspended taskfor any active
task fromR"O {t,} and T", < T*"},

« no resource conflict between any two tasks thairigetoS),,

Above restrictions can cause that non-empty Setdoes not exist and when
execution of active tadk is finished no other suspended task from taslsekaswill
be resumed to start its execution.

In situation when various sef, exists arbitration rule should be used to
choose conflictless one sched@é,, in example should be chosen most numerous
set of suspended taghth the lowest sum of logical time values for tdskonging
to S Each preparation of conflictless schedulenith point of time bases on
detection of resource conflicts between many setedhsk couples stored in
conflict arrayM". Resource conflict between tasks from differemissés can be
simply detected by reading a single value from konfrray M i.e. resource
conflict between tasks,00 C; and t,(J C; exist only ifm;#0. The conflictless
schedule has to adapt to task class cardinalityagical time of its longest waiting
task, therefore it is a adaptive conflictless sciteedvhich can be applied only in
fixed state of task processing environment.

241

Active classes,
+ # which have at least
one active task that

C":L C"2 C"3 C"4 C”5 C"6 C"7 C"8 cn belongs to set R".

C" | x X X X
c", X X X X
C x X | X X
c", X[x| x X
C'. | x X
n
c 6 X X X
c" X X X Legend:
n X — non-zero
C g X | X X X value represents
existence at least
one resource
c" conflict between
N XX X two task classes.

Figure 1. Example of conflict array in selected n-th pointime

Figure 1 presents example state of conflict amafjxed n-th point in time for
number N of existing task classes. The presented conflichya contains
additionally indication of active classes accordinglements in active task $&t

6. Elimination of task starvation in adaptive conflictless schedule preparation

Conflictless schedule is prepared step by stepciwiallows to adapt to
changing conditions in task processing environmdntesented concept of
conflictless scheduling determines set of tasks elRacution can be started when
fixed active task finish its execution. The multip&onflictless task scheduling is
result of the assumption, that task execution fsneot known. Lack of long-term
schedule could cause a repeating pattern in tasls gelection, which can exclude
resuming of task from other classes. If task haenéeen included in prepared
schedule it waits infinitely for execution and tastarvation problem occurs.
Concept of conflicless task scheduling that alleaesurrences of task starvation
problem is not correct, because it does not erfaimeess in task execution.

The main role in elimination of task starvation lpeam in conflictless task
scheduling concept is to often change members tofeaclass set. However this
rule is not sufficient to eliminate the task stdima problem. Therefore another
rule takes into consideration logical time of wagtitasks, in conflictless schedule
preparation longer waiting tasks are preferredegimits execution first.

242

Algorithm of determination of conflicless sched8 in n-th point of time
for situation when active tagk] C,n R"execution is finished:

1. Determine collectior", of all non-empty task class€S; that has conflict

with C", where fori # k my# 0 in conflict array.

2. If task clas<C"s queue is not empty(C") > 0, add clas€" to determined
class collectior®",.

3. Among task classes from collecti@f find the taskt*, with the lowest
value of logical timel*,, this task has the oldest waiting time in heaélf
class queues from collecti@. Class that include task.is markedC*".

4. Remove from class collectiad", each class that has at least one resource
conflict with any other active class thaf.

5. Remove from class collectio®", each classC"; that has at least one
resource conflict with recently determinegt”, for any active class
(including C"y only if C*" is included in collectiorQ",) that fulfills the
conditionsC"; # C*" andT"; > T*".

6. If C*"cdoes not belongs to class collecti@fithen go to step 7, otherwise
go to step 8.

7. In class collectiorQ" find the most numerous subset of classes without
resource conflict and the lowest sum of logicaletivalues for head task
belonging to queues of classes from selected subsdb step 10.

If C"# C*"cthen go to step 9 otherwise go to step 10.

In class collectiorQ" find the most numerous subset of classes without
conflict and includingC*".. When many collections exist choose that one,
that has lowest sum of logical time values for hiea#t from class queues.
10.Add to S each next task from queue of any class from cidiedQ",.

In situation when foC"; conditionIRW, = IR, is also satisfied add ®\all

tasks waiting in queue of cla€s.

Presented algorithm uses conflict array structuitd additional information like
cardinality of any task class or logical time ofatetask in all class queues.
Presented algorithm can be run in many instancésghwallows for fixedn-th
point in time parallel preparation of many conféss scheduleS',. Each one
conflictless schedul8'is prepared for other case, when execution onectbfea
taskt O R is finished. In practice only one from all prepaszhedules will be
used. Theoretically all calculations required toedmine conflictless schedufg
can be performed ahead before active tdasiR" execution finish, than all required
calculations for conflictless schedule preparatioave to be performed in
environment isolated from task execution. If alcoéation related with preparation
conflictless schedul&, will be completed before finish of active task C, then
there will be no additional delay in task procegsin

© ©

243

Validity of determined conflictless schedules imdi limited. Anyone of
presented situations can cause useless of eatemined conflictless schedules:

» change in the active task set,

» change in task class cardinality,

» adding a new task class.

Conflictless schedules have to be prepared oftdngarckly. It requires dedicated
environment for manage structures and algorithnecebi@ns to prepare conflictless
schedules, which is discussed in chapter 7.

Example situation of conflictless task processingenvironment with high
contention resource utilization mth point in time presents state of conflict array
on figure 2. Additionally for any detected resoumnflict between non-empty
task classes logical time values for classes a¥septed on figure 2, each one is
determined by the longest waiting task in classugue n-th point of time.

In presented on figure 2 situation three conflgtlechedules are determined using
proposed algorithm. Only one from prepared condlsst schedul&",, S¢"s, St";

will be used depending on which active task frefhwill be finished first. All
prepared conflictless schedulgs,, St"s, S*"; are valid only im-th point of time.

Active classes,
+ + + which have at least
one active task that
C"l an C"3 C"4 C"S C"6 C"7 C"8 c" belongs to set R".

N

cn n n n n Assumptions:
1 T 1 T 1 T 1 T 1 All task classes in n-th point in time
Cn2 T"2 T"2 ‘|'"2 '|'"2 are not-empty and T"_<T", <T"_
c [T [T T Legend: _ _ _
3 3 3 3 3 T" represents in n-th point of time
cn T™IT|T™ ™ logical time value for task that is
4 4 4 4 4 localized in head of queue of class
C"'5 ™ i C" and has resource conflict with
5 5 '
cr o " o task class selected by column.
8 T 6 T 6 T 6 Values T”i with bold formatting
(o T™ ™ Tn | represents in n-th point of time the
7 7 T 7l lowers wvalues in k-th column
Cl'l Tn Tn Tn C*" =C".
8 k i
8 g £ Grey background indicates in rows
classes that task are included in
repared conflictless schedule S"
Cn n n P K
N T"N T N T N| in n-th point in time.

Figure 2. Conflictless schedules for example conflict array
in selectedh-th point of time

Conflictless schedul& ", includes at least one task from cl&% and C"s.
If condition 3 is satisfied for clags"s or C', then all tasks waiting in this class
gueue can be assignedSn. ClassC", =C*", not belongs toS", conflictless

244

schedule because it has resource conflict v@th=C*"; and T >T"s. This
prevents starvation of tasks from cla@% which is included in many cycles in
WFG (Wait For Graph) presented in figure 3. ConficrayM is a representation
of WFG for task classes.

Figure 3. Wait for graph for task classes in seleatetth point in time

The conflictless schedul®"; includes at least one task from cl&s and
C"\. If condition 3 is satisfied for clags’; or C'y, then all tasks waiting in class
gueue are assigned to schedsi&. When active task execution from classi<C
finished then according to prepared schedsi& another task from clas€"s
begins execution. If condition 3 is satisfied tlainsuspended task can be removed
from classC's queue and executed. The starvation of suspendkddtasrs if its
execution will be stared in finite time [5]. Prepton of adaptive conflictless
schedule bases on analysis of resource conflidiselea not-empty classes and
includes also logical time of waiting tasks. Thisseres that set of active classes
changes that execution of task from all classe$ bdl resumed. This avoids
occurrence of task starvation problem.

The preparation of conflictless schedule for seléctime period requires
preparation of adaptive conflictless schedules nmémgs according to presented
algorithm. Current environment state is taking irdocount when adaptive
conflictless schedules are prepared in selectadgof time. Those time points are
determined by execution finish of any active taBlgure 4 presents usage of
prepared schedules for example conflict array ffigare 4 inn+ 1, n+ 2 and
n + 3 time points. Those points of time are deteaniby each execution finish of
active task. Inn+ 1 point of time task from clasSs finish its execution and
according to adaptive conflictless schedule anotask from clas<"* s can be
executed. However finish this task does not camsewgion next task from clag;
which counteracts of task starvation for conflictask from conflicted clasg"**,
(execution of task fron€; is started later im + 7 point in time). Identical situation
occurs inn+ 5 point of time, when execution of task formsd&s is finished,
which prevents starvation of tasks from clagd¥&s’, andC"* >,

245

teC,NR=!

P> P tecnres

teCNRa2 | | > -
2 ; i i teC MR
B ted NRe A

teC.MNR= hi teC. MR ! ! . tEC:\-ﬂR”_T
- = : ! _—

| . . — .
n n+l n+2 n+3 n+4 n+5 n+6n+7 time

n+l +1 n+d 4
=T =T

T 5 1 T 5 1

ek

N Cr =C™,

-] 1

+5 +5
C*n+25:Cn+21 T B> T -

#HE — S
C =C
E z

Figure 4. Example of conflictless schedule in period of time
with environment conditions

Analysis of schedule from figure 4 show that fory gmoint of time new
adaptive conflictless schedules should be prepdechuse different environment
conditions cause that earlier determined schedales useless. Frequent and
parallel preparation of conflictless schedule nisethted computing environment,
which resources are not used by tasks. Efficiesit éxecution required preparation
of all conflictless schedules before one of actasks finishes its execution. Due to
the high degree of parallelization and frequency aainflictless schedule
preparation as isolated computing environment foeparation of adaptive
conflicless schedules was proposed modern GPU.

7. Effective preparation of conflictless schedule by GPU

Modern GPU are isolated computing environment vadn memory and
multiple processing units, that architecture isegatized as SIMD in Flynn
Taxonomy [2]. The GPU can be used to prepare aé st conflict array with so
far detected resources conflicts between task etagsmy request of new type of
task causes new task class creation and updatnfiict array. There is no need in
conflictless schedule preparation to transfer ¢ordirray from GPU memory.

Using prepared algorithm GPU allows to prepare mamlictless schedule
at the same time, each one for situation when @biive task finish its execution.
It is possible because during conflictless schegubparation values stored in
conflict array did not change. For conflicless stliang implementation on GPU
are recommended OpenCL or CUDA technology [1].

246

8. Conclusions

The proposed task scheduling concept is novel dudata model of task
resources representation and methods of resoundlictaletection between tasks,
structures like task classes and conflict array alggrithms preparing schedule
without resource conflict between tasks. Conflgtlescheduling is designed to
environment with limited number of global resourctgt are acessed by task in
high contention manner. The conflictless schedlimimates resource conflict
between executed tasks, therefore deadlock isosdille. Conflictless scheduling
can be alternative to use other synchronizationhamg@ism. The correctness of
developed scheduling algorithm requires that it teasnsure liveness and fairness
for tasks. Liveness requires that prepared colsftist schedule eliminate task
starvation problem, which was discussed in thisepdp proposed task scheduling
concept it was provided by using logical time fasks and check its values in
adaptive conflicless schedule preparation.

REFERENCES

[1] Du, P., Weber, R., Luszczek, P., Tomov, S., Peterég & Dongarra, J. (201Erom
CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU
programming. Parallel Computing, 38 (8), 39%+407.

[2] Flynn M.J., Rudd R. W. (1996parallel architectures;, ACM Computing Surveys,
Volume 28, Issue 1, 67-70.

[3] Silberschatz A., Galvin P.B., Gagne G. (200pgrating system concepts, Wiley John
Sons, 9th edition.

[4] Smolinski M. (2010) Rigorous history of distributed transaction execution with
systalic array support, XXXI ISAT conference, Information Systems Architexe and
Technology New Developments in Web-Age Informati@ystems, Oficyna
Wydawcznicza PW, 23%54.

[5] Tanenbaum, A., Bos H. (201¥)odern operating systems. Prentice Hall, 4th edition.

247

