
INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol. 5 (2) 237−247

ELIMINATION OF TASK STARVATION IN CONFLICTLESS
SCHEDULING CONCEPT

MATEUSZ SMOLIŃSKI

Institute of Information Technology, Lodz University of Technology

New concept of conflictless task scheduling is an alternative approach to existing
solutions in concurrency. Conflictless task scheduling includes data structures and
algorithm that prevents occurrence of resource conflict between tasks executed in
parallel. The range of applications the conflictless task scheduling includes different
environments like transactions processing in database management systems,
scheduling of processes or threads in operating systems or business processes
management. Task scheduling without any resource conflicts is dedicated to high
contention of limited resources environments and its algorithm can be implemented
in modern GPU. This paper presents concept of local task scheduling without
resources conflicts occurrence, discusses features of new approach and focuses on
problem of task starvation. Elimination of task starvation is included in conflictless
task scheduling concept, detailed explanation are contained in this paper.

Keywords: Resource conflict elimination, conflict free task schedule, deadlock
avoidance, concurrency control, mutual exclusion, transaction processing, OLTP

1. Introduction

Resource conflict occurs in multitasking environment when many tasks
executed in parallel use the same instance of resource and at least one of them
perform operation, which changes this resource state. Elimination of negative
phenomenon as resource conflicts can be performed in many ways, for example
using competitive or cooperative concurrency. All concurrency methods

238

synchronize global resource allocation. In competitive concurrency various
synchronization mechanism can be used (i.e. semaphores, locks or barriers),
however tasks do not communicate each other to determine order of resource
allocation. A significant problem in competitive concurrency is proper selection
and correct application of synchronization mechanism for access to global
resources. Another problem is to choose fine or coarse grain strategy in resource
synchronization. In cooperative concurrency tasks communication is possible, also
dedicated structures can be used to store environment state. Supervision
mechanism bases on task communication or dedicated structures that support
prevention of unsafe environment state [3, 5].

The elimination of resource conflict between executed tasks ensures
avoidance of deadlock. But there is no universal synchronization method that
guarantees task execution without resource conflict in any environment. Even
when task specification is known, selection and use proper concurrency method are
not always apparent to programmer.

In next chapters concept of universal solution of conflictless task scheduling
will be presented. This concept bases on dedicated structures and algorithms, that
guarantee fairness and liveliness in task processing without resource conflicts. New
concept can be used in various environments of task processing that meet fixed
assumptions. In further discussion a task starvation problem in conflictless task
scheduling has been examined.

2. Assumptions for conflictless task processing environment

Task processing environment has own specifics resulting from the number of
task sources and characteristics of requested tasks. Any requested task is single unit
of work and is defined by sequence of operations and resources, which are required
to finish its execution. Resources required by task can be local or global. Resource
instance is local when is used by only one task, in other case resource is global.

New concept of conflictless task scheduling is dedicated to any high
contention environment that meets assumptions for requested tasks:

• all resources required by requested task exists,
• set of all global resources required by requested task is known before its

execution begins,
• many requested tasks can be executed in parallel,
• execution time for task is not known and its finish time is not limited,
• each task requires minimum one global resource,
• task are independent and its execution order is not fixed,
• task execution is not depended on interaction with external objects,

239

• tasks are equivalent and there is no task priorities,
• number of global resources is limited and any global resource has only one

instance.

In applied task definition single task with long sequence of operations can be
divided into many smaller sub-tasks, which have to be requested by task source one
by another. This technique can be also used for interactive task to isolate subtasks
that do not require any global resource. The range of application of proposed
conflictless task scheduling includes various environments like scheduling of
processes or threads in operating systems, transaction processing systems
or business process environments. Regardless of the type of task in high-contention
environments each requested task reveals a specific representation of all required
global resources before its execution begin and reports finish of execution.
Even task execution interrupted by error has to be reported to resume other waiting
conflicted tasks.

3. Task representation and resource conflict detection

The concept of conflictless task scheduling requires special task resources
representation model which is used to fast verification existence of resource
conflict between tasks. In presented concept all global resources required by task
are represented in its binary identifiers IRW and IR, they are granted to task by
central resource controller. In those binary identifiers single bit represents only one
global resource, the length of resources identifiers is limited by number of global
resources. This task resource representation is scalable [4]. Identifier IRW
represents all global resources used by task that are read or written in its sequence
of operations. However IR represents all global resources used by task that are only
read. As opposite to write read operation do not change global resource state.
Besides of resources identifiers each requested task tk has assigned a logical time Tk
number. Order of logical time values represents sequence of granting binary
resource identifiers by central resources controller to tasks.
Detection of resource conflict between two tasks using their binary resource
identifiers requires to check simple condition:

 (IRWi and IRWj) xor (IRi and IRj) ≠ 0 (1)

If above condition is satisfied then exists at least one resource conflict
between tasks. This means that two task can not be executed in parallel and its
execution order must be determined. Logical time values can be used to determine
sequence of conflicted task execution, longer waiting task can be executed first.

240

4. Structures for conflictless task schedules generation

Controlling tasks execution without resource conflicts requires to maintain
two sets: active task set R that are executed and waiting task set W that are
suspended. In any n-th point in time active task set Rn and waiting task set Wn do
not have any common elements Wn ∩ Rn = Ø. Effective task processing requires
maximization of cardinality of the active task set Rn in any point of time. Resource
conflict detection between newly requested task and any active task and also
between suspended tasks is supported by dedicated structures task classes C and
conflict array M. State of this structures may vary over time, so state of task class
Ck in n-th point of time will be marked Cn

k and respectively state of conflict array
in n-th point of time represents Mn. Single task class groups all tasks with the same
values of resources binary identifiers:

Ck = { ti: IRWi = IRWk ∧ IRi = IRk} (2)

In n-th point in time task class Cn
k groups only supended tasks. If task from

class Ck is executed (this task is included in set Rn) then class Cn
k is marked as

active, but active task t ∈ Ck ∩ Rn not belongs to Cn
k ⊆ Ck. Therefore in n-th point

in time suspended task set Wn = Cn
1 ∪ … ∪ Cn

N. For any active class Cn
k there has

to be determined task class C*nk
 which includes oldest suspended task t*k that has

resource conflict with active task tk ∈ Ck ∩ R. Each non-empty task class has its
own FIFO queue, which determines order of execution of their suspended tasks.
Each FIFO queue is assigned to other resource group represented by task class,
which has at least one task suspended. This multi queues approach can be treated as
alternative to use many synchronization mechanisms with coordination of
emptying their queues for waiting tasks. In n-th point of time cardinality of task
class n(Cn

k) show number of suspended tasks that are located in class Cn
k queue.

According to prepared conflictless schedule the task class Cn
k queue leaves only

single the oldest waiting task, only if condition is not satisfied:

IRWk = IRk (3)

If condition 3 is satisfied then all tasks from task class Ck queue can be
executed in parallel. The conflict array M is another structure, which stores
conflicts detected between task classes bases on condition 1. If in two dimension
array value mij = 0 then there is no conflict between tasks belonging to different
classes Ci and Cj. Conflict array M is always symmetric M = MT, so only half of it
should be calculated. Dimension of array M changes every time when new task
class is added because in n-th point of time Mn = g(Rn, Cn

1, C
n
2, ..., C

n
N).

If dimension of array M changes then all conflict values must be calculated
between new added and any other existing task class. If there is no resource

241

conflict between the new class and any other active class, then execution of task
from new class has begin and new class becomes active. Otherwise new task is
suspended in class FIFO queue and is waiting to resume according to prepared
conflictless schedule of task execution.

5. Preparation of adaptive conflictless schedule

The conflicless task processing includes determination the task execution
order for waiting tasks, which ensures parallel task execution without global
resource conflicts. Appropriate set of tasks is fixed by conflicless schedule, which
is adequate to task environment state. In n-th point in time number of conflictless
schedules to prepare is limited by cardinality of active task set Rn because time of
task execution is not known. The conflictless schedule should be prepared to each
situation that execution of active task tk ∈ Rn finishes and requires to determine set
Sn

k of suspended tasks that can be executed in parallel without resource conflicts.
Any task set Sn

k has to fulfill all conditions:

• all tasks belonging to Sn
k has conflict with finished task tk,

• no resource conflict between task belonging to Sn
k and any active task from

set Rn / { tk},
• no resource conflict between task belonging to Sn

k and the oldest suspended
task t*k

 for any active task from Rn ∪ { tk} or when resource conflict exists
between task ti belonging to Sn

k and oldest suspended task t*k
 for any active

task from Rn ∪ { tk} and Tn
i < T*n

k,
• no resource conflict between any two tasks that belong to Sn

k,

Above restrictions can cause that non-empty set Sn
k does not exist and when

execution of active task tk is finished no other suspended task from task classes will
be resumed to start its execution.

In situation when various sets Sn
k exists arbitration rule should be used to

choose conflictless one schedule S*n
k, in example should be chosen most numerous

set of suspended task with the lowest sum of logical time values for task belonging
to Sn

k. Each preparation of conflictless schedule in n-th point of time bases on
detection of resource conflicts between many selected task couples stored in
conflict array Mn. Resource conflict between tasks from different classes can be
simply detected by reading a single value from conflict array M i.e. resource
conflict between tasks tx ∈ Ci and tx ∈ Cj exist only if mij ≠ 0. The conflictless
schedule has to adapt to task class cardinality and logical time of its longest waiting
task, therefore it is a adaptive conflictless schedule which can be applied only in
fixed state of task processing environment.

242

Figure 1. Example of conflict array in selected n-th point in time

Figure 1 presents example state of conflict array in fixed n-th point in time for

number N of existing task classes. The presented conflict array contains
additionally indication of active classes according to elements in active task set Rn.

6. Elimination of task starvation in adaptive conflictless schedule preparation

Conflictless schedule is prepared step by step, which allows to adapt to
changing conditions in task processing environment. Presented concept of
conflictless scheduling determines set of tasks that execution can be started when
fixed active task finish its execution. The multipath conflictless task scheduling is
result of the assumption, that task execution time is not known. Lack of long-term
schedule could cause a repeating pattern in task class selection, which can exclude
resuming of task from other classes. If task has never been included in prepared
schedule it waits infinitely for execution and task starvation problem occurs.
Concept of conflicless task scheduling that allows occurrences of task starvation
problem is not correct, because it does not ensure fairness in task execution.

The main role in elimination of task starvation problem in conflictless task
scheduling concept is to often change members of active class set. However this
rule is not sufficient to eliminate the task starvation problem. Therefore another
rule takes into consideration logical time of waiting tasks, in conflictless schedule
preparation longer waiting tasks are preferred to begin its execution first.

243

Algorithm of determination of conflicless schedule Sn
k in n-th point of time

for situation when active task tk ∈ Ck ∩ Rn execution is finished:
1. Determine collection Qn

k of all non-empty task classes Cn
i that has conflict

with Cn
k, where for i ≠ k mik ≠ 0 in conflict array.

2. If task class Cn
k queue is not empty n(Cn

k) > 0, add class Cn
k to determined

class collection Qn
k.

3. Among task classes from collection Qn
k find the task t*k with the lowest

value of logical time T*k, this task has the oldest waiting time in head of all
class queues from collection Qn

k. Class that include task t*k is marked C*n
k.

4. Remove from class collection Qn
k each class that has at least one resource

conflict with any other active class than Cn
k.

5. Remove from class collection Qn
k each class Cn

i that has at least one
resource conflict with recently determined C*n

j for any active class

(including Cn
k only if C*n

k
 is included in collection Qn

k) that fulfills the
conditions Cn

i ≠ C*n
j and Tn

i > T*n
j.

6. If C*n
k
 does not belongs to class collection Qn

k then go to step 7, otherwise
go to step 8.

7. In class collection Qn
k find the most numerous subset of classes without

resource conflict and the lowest sum of logical time values for head task
belonging to queues of classes from selected subset. Go to step 10.

8. If Cn
k ≠ C*n

k
 then go to step 9 otherwise go to step 10.

9. In class collection Qn
k find the most numerous subset of classes without

conflict and including C*n
k. When many collections exist choose that one,

that has lowest sum of logical time values for head task from class queues.
10. Add to Sn

k each next task from queue of any class from collection Qn
k.

In situation when for Cn
j condition IRWj = IRj is also satisfied add to Sn

k all
tasks waiting in queue of class Cn

j.

Presented algorithm uses conflict array structure with additional information like
cardinality of any task class or logical time of head task in all class queues.
Presented algorithm can be run in many instances, which allows for fixed n-th
point in time parallel preparation of many conflictless schedules Sn

k. Each one
conflictless schedule Sn

k is prepared for other case, when execution one of active
task t ∈ Rn

 is finished. In practice only one from all prepared schedules will be
used. Theoretically all calculations required to determine conflictless schedule Sn

k

can be performed ahead before active task t ∈ Rn
 execution finish, than all required

calculations for conflictless schedule preparation have to be performed in
environment isolated from task execution. If all calculation related with preparation
conflictless schedule Sk will be completed before finish of active task t ∈ Ck then
there will be no additional delay in task processing.

244

Validity of determined conflictless schedules is time limited. Anyone of
presented situations can cause useless of earlier determined conflictless schedules:

• change in the active task set,
• change in task class cardinality,
• adding a new task class.

Conflictless schedules have to be prepared often and quickly. It requires dedicated
environment for manage structures and algorithm executions to prepare conflictless
schedules, which is discussed in chapter 7.

Example situation of conflictless task processing in environment with high
contention resource utilization in n-th point in time presents state of conflict array
on figure 2. Additionally for any detected resource conflict between non-empty
task classes logical time values for classes are presented on figure 2, each one is
determined by the longest waiting task in class queue in n-th point of time.
In presented on figure 2 situation three conflictless schedules are determined using
proposed algorithm. Only one from prepared conflictless schedule S*n

2, S*n
5, S*n

7
will be used depending on which active task from Rn will be finished first. All
prepared conflictless schedules S*n

2, S*n
5, S*n

7 are valid only in n-th point of time.

Figure 2. Conflictless schedules for example conflict array

in selected n-th point of time

Conflictless schedule S*n
2 includes at least one task from class Cn

6 and Cn
8.

If condition 3 is satisfied for class Cn
6 or Cn

8, then all tasks waiting in this class
queue can be assigned to S*2. Class Cn

4 = C*n
2 not belongs to S*n

2 conflictless

245

schedule because it has resource conflict with Cn
3 = C*n

7
 and Tn

4 > Tn
3. This

prevents starvation of tasks from class Cn
3 which is included in many cycles in

WFG (Wait For Graph) presented in figure 3. Conflict array M is a representation
of WFG for task classes.

Figure 3. Wait for graph for task classes in selected n-th point in time

The conflictless schedule S*n
7 includes at least one task from class Cn

3 and
Cn

N. If condition 3 is satisfied for class Cn
3 or Cn

N, then all tasks waiting in class
queue are assigned to schedule S*n

7. When active task execution from class C5 is
finished then according to prepared schedule S*n

5 another task from class Cn
5

begins execution. If condition 3 is satisfied then all suspended task can be removed
from class Cn

5 queue and executed. The starvation of suspended task occurs if its
execution will be stared in finite time [5]. Preparation of adaptive conflictless
schedule bases on analysis of resource conflicts between not-empty classes and
includes also logical time of waiting tasks. This ensures that set of active classes
changes that execution of task from all classes will be resumed. This avoids
occurrence of task starvation problem.

The preparation of conflictless schedule for selected time period requires
preparation of adaptive conflictless schedules many times according to presented
algorithm. Current environment state is taking into account when adaptive
conflictless schedules are prepared in selected points of time. Those time points are
determined by execution finish of any active task. Figure 4 presents usage of
prepared schedules for example conflict array form figure 4 in n + 1, n + 2 and
n + 3 time points. Those points of time are determined by each execution finish of
active task. In n + 1 point of time task from class C5 finish its execution and
according to adaptive conflictless schedule another task from class Cn + 1

5 can be
executed. However finish this task does not cause execution next task from class C5
which counteracts of task starvation for conflicted task from conflicted class Cn + 4

1
(execution of task from C1 is started later in n + 7 point in time). Identical situation
occurs in n + 5 point of time, when execution of task form class C6 is finished,
which prevents starvation of tasks from classes Cn + 5

2 and Cn + 5
4.

246

Figure 4. Example of conflictless schedule in period of time
with environment conditions

Analysis of schedule from figure 4 show that for any point of time new

adaptive conflictless schedules should be prepared, because different environment
conditions cause that earlier determined schedules are useless. Frequent and
parallel preparation of conflictless schedule need isolated computing environment,
which resources are not used by tasks. Efficient task execution required preparation
of all conflictless schedules before one of active tasks finishes its execution. Due to
the high degree of parallelization and frequency of conflictless schedule
preparation as isolated computing environment for preparation of adaptive
conflicless schedules was proposed modern GPU.

7. Effective preparation of conflictless schedule by GPU

Modern GPU are isolated computing environment with own memory and
multiple processing units, that architecture is categorized as SIMD in Flynn
Taxonomy [2]. The GPU can be used to prepare and store a conflict array with so
far detected resources conflicts between task classes. Any request of new type of
task causes new task class creation and update of conflict array. There is no need in
conflictless schedule preparation to transfer conflict array from GPU memory.

Using prepared algorithm GPU allows to prepare many conflictless schedule
at the same time, each one for situation when other active task finish its execution.
It is possible because during conflictless schedule preparation values stored in
conflict array did not change. For conflicless scheduling implementation on GPU
are recommended OpenCL or CUDA technology [1].

247

8. Conclusions

The proposed task scheduling concept is novel due to data model of task
resources representation and methods of resource conflict detection between tasks,
structures like task classes and conflict array and algorithms preparing schedule
without resource conflict between tasks. Conflictless scheduling is designed to
environment with limited number of global resources, that are acessed by task in
high contention manner. The conflictless schedule eliminates resource conflict
between executed tasks, therefore deadlock is not possible. Conflictless scheduling
can be alternative to use other synchronization mechanism. The correctness of
developed scheduling algorithm requires that it has to ensure liveness and fairness
for tasks. Liveness requires that prepared conflictless schedule eliminate task
starvation problem, which was discussed in this paper. In proposed task scheduling
concept it was provided by using logical time for tasks and check its values in
adaptive conflicless schedule preparation.

REFERENCES

[1] Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., & Dongarra, J. (2012) From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU
programming. Parallel Computing, 38 (8), 391−407.

[2] Flynn M.J., Rudd R. W. (1996) Parallel architectures, ACM Computing Surveys,
Volume 28, Issue 1, 67–70.

[3] Silberschatz A., Galvin P.B., Gagne G. (2012) Operating system concepts, Wiley John
Sons, 9th edition.

[4] Smoliński M. (2010) Rigorous history of distributed transaction execution with
systolic array support, XXXI ISAT conference, Information Systems Architecture and
Technology New Developments in Web-Age Information Systems, Oficyna
Wydawcznicza PW, 235−254.

[5] Tanenbaum, A., Bos H. (2014) Modern operating systems. Prentice Hall, 4th edition.

