INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2015) Vol. % {31-182

MANAGING COMPLEX SOFTWARE PROJECTS

PAWEL JANCZAREK, JANUSZ SOSNOWSKI

Institute of Computer Science, Warsaw Universityathnology

In the paper we present our experience with devedop and maintenance of
complex software systems. In particular, we cotre¢é® on monitoring related
development, testing and debugging processes. We d&aalyzed the contents of
collected reports (provided by different tools) edmg many projects and defined
several metrics and statistics helpful in managiogplex projects and achieving
high quality software. Moreover, we have identifladking data which could im-
prove these processes.

Keywords:Software Development and Maintenance, Testing,eétdyonitoring,
Data Analysis

1. Introduction

Contemporary information systems are becoming raacemore complex in
software. They are characterized by long time dgeknt involving many engi-
neers (developers, testers, debuggers, projectgaarat) followed by software
maintenance. In big projects it is important to aga and monitor all these pro-
cesses. There are various standards and methoewlpgividing general rules on
how to deal with these processes [11, 12, 17]ahtiqular, they underline the need
of monitoring various aspects characterizing thegpss, effectiveness and quality
of the involved processes. For this purpose varmusmercial or open source
tools have been developed to collect data on thiegirprogress, they are useful in
project management decisions. There are many m@tiolis devoted to specific
problems. Most of them deal with the flow of deymteent processes at some ab-

stract level, e.g. workload within different deveteent phases [13], prediction of
reliability or other features (based on derivedyieal models) [3, 5, 14, 18].

Having gained some experience with commercial Ibijegts we present the
capabilities and limitations of monitoring develogmh and maintenance processes
in relevance to typical data repositories (tesgpess, problem handling reports)
created and managed in such projects. We give gineof related problems con-
sidered in the literature and confront them with experience. In general, we have
observed abundant information in the created rémiss which results from more
complex models of development and debugging as ageltom the capabilities of
the used supporting tools (e.g. Redmine, TestLiviéntis Bug Tracker, TRAC).
We concentrate on monitoring the progress of tgstimd handling detected prob-
lems during system development and maintenancdofeagon). Having analyzed
various collected data from real projects targetiegervices in telecommunication
domain (class of CRM systems) we propose varioadyaes schemes which are
helpful in project management. They provide moreugate evaluation of problem
handling processes, resulting in quality improvenadrsoftware projects.

Section 2 systemizes problems of project monitorBection 3 presents the
main features of available tools and related depasitories. The range and useful-
ness of data analysis are illustrated in sectidfirdal conclusions are briefly summa-
rized in section 5.

2. Project monitoring problems

Software project development involves product dpetion, design, imple-
mentation and testing. The resulting software pcodiithereafter delivered to the
end users or the market and then maintained. Irppanprojects all the related
activities are time consuming, distributed amongynactors and they have a big
impact on product quality and its cost. Hence,mapadrtant issue is to assess these
processes in order to identify bottlenecks (inédficy) of the processes and intro-
duce necessary improvements or corrections.

The assessment process needs collecting approphatacteristic data on
performed activities and their effectiveness. Ia literature there are many studies
related to these problems, however most of theynarelrepositories storing failure
detection times [14-16, 19]. These data are usefsb called software reliability
growth modelling (SRGM). SRGM models are derivethgsecorded error detec-
tion times and they provide the capability of assestest effectiveness and prod-
uct reliability, e.g. the needed test time to aghithe specified reliability level, the
number of the remaining errors [14, 18]. Some eodaents can be included to
distinguish several failure severity levels, nomf@et corrections [10], testing ef-
fort changes [4], etc. ([15]). This is product ottied analysis. Another approach is
targeted at assessment of development and maictemuocesses. Here, we can

172

trace efficiency and work impact in different presig phases (e.g. designing,
testing, problem analysis, correcting, retestindeployment). To characterize
these processes various indicators or measureassodiated interpretation can be
proposed in relevance to different abstractionlgveg. completion time of tasks,
failure detection and correction rate, failure Hangd progress within different
stages, testers effectiveness, users activitiggadp changes, etc. The introduced
measures can be categorized, e.g. describing cestsatisfaction, development
and maintenance costs, usage of human and teclagmlrces, correlation with
assumed time schedules.

Some interesting papers based on case studiesvilealumulative flow dia-
grams (CFDs [13]). They allow to detect partialgne work, bottlenecks, discon-
tinuities in workflow, excessive hand-overs, wagtiand service (problem han-
dling) times, etc. The y-axis of the CFD showsdbmulative number of problems
(tasks, requests) in relevance to time (x-axis)DE€Eomprise several increasing
line plots each corresponding to the appropriatesehThe top-line relates to the
total number of inflow problems, the second linenirthe top presents the hando-
ver from the first phase to the second one, etc.specified time moment x the
distance between the top line and the succeediagpmsents the work in progress
(expressed in the number of problems) in phasécl1G#Ds illustrate flow conti-
nuity and throughput. Line flathess or low upsl@secompared with an upper line
relates to continuity problems, e.g. longer inattiperiods which may later result
in some overload (typical for integration testingape). The throughput problem
arises while the handover of phase higher than in the phasel (bottleneck
situation of more problems flowing in than out).

CFDs are useful in the case of a small number aseé (problem handling
states). They are not satisfactory in the caseatmtates, moreover they do not
show loopbacks, which we have identified as an megligible effect in real pro-
jects. Hence, we have developed more sophistigatgeh model PHG (problem
handling graph) described in [7]. The nodes cowadgo problem handling phases
(states) and edges describe transitions. This gsapbrrelated with a data base
describing characteristics of problems and handiimgs for each problem.

To derive product or process oriented metrics weelta collect appropriate
data during development and maintenance. Thiseidé#sis for statistical process
control (SPC) which is helpful to optimize procesaad assure high product quali-
ty [5, 13, 17]. Many software companies improveirttdevelopment processes
according to CMM, CMMI or other concepts [11, 1Bhwever SPC approach is
rarely applied. Quite often software developmennganies use various tools to
create data repositories relevant to these progelsspractice, they comprise a lot
of data which is neglected or not analyzed in &esgatic and formalized way. On
the other hand some important data is not collediedhe literature the infor-
mation contents was neglected and most papersomgdome selected data.

173

We have analyzed various repositories related ablomg time projects and
tried to identify interesting data for managemautharities. In the sequel we out-
line the capabilities of collecting such data ussoge popular tools. As compared
with other approaches discussed in the literatweal@al with abundance of data in
problem report repositories and perform fine-grdinaalysis.

3. Toolsfor collecting data

There are many tools (commercial and free) supmpgoftware project man-
agement. They are used in reputable or big compaane less popular in small
software companies. These tools are targeted fatrelitt aspects, e.g. monitoring
project progress in relevance to release deadlimesjtoring testing or problem
handling activities. Usually, they provide a lotddta stored in some form of re-
positories, handle multiple projects simultaneowsig provide rich GUI interfaces
accessible via web browser. The structure and ot these repositories can be
configured. In this section we give an outline oEgibilities of some popular tools
which are used by many software development coregani

TestLinkis a tool (http://www.testlink.org) designed fast case manage-
ment. It provides a centralized repository for aging requirements and tests for
project/system. It supports all testing stagesuirements specification, test plan-
ning, preparation of test scenarios, test casegssures flexible management of
user roles and provides reporting on test execyiimriuding visualization of re-
ports, related metrics, statistics, graphs germrgtiwhich is useful to monitor
progress of test cases or scenarios. It can thecarplementation of test cases for
many environments (e.g. testing, development, priooin). It can cooperate (ex-
change information) with error/problem managememist (e.g. Bugzilla, JIRA,
Mantis BT).

TestLink repository stores data on tester acéisitand roles, test cases and
scenarios, test plans and assignment of test ¢tses scheduling), test results,
etc. The whole repository comprises about 60 tablidsch cover all these data.
This repository can be adapted to the requiremehtbe project - for example
specific attributes.

The main entities used by TestLink are: test cest, suit, test plan, test pro-
ject and tester (user). Test case describes adestsk using steps (actions), and
expected results. Test cases are the building 8lotK estLink. Test suite groups
test cases into units. It arranges test specificatinto logical parts. Test plan is
created for test cases and specifies their exettitiee schedule. Each test plan can
include releases (builds), milestones, user as®gtsrand finally test results. Test
project consists of test specification with tessesg requirements and keywords.
Test project is a persistent object through lifetiofi the project in TestLink.

174

Each TestLink user has assigned roles, which greailable TestLink fea-
tures to this user. Tester and quality assuranég (€ader, can create test cases,
run those test cases, save results or adjust timake(small changes). QA leader is
also responsible for managing the whole test ptojéser with this role can create
test plans, generate test reports or adjust sobgdeic.

Redminas a tool (http://www.redmine.org) designed fooject management.
It comprises a centralized repository for manageqguirements, version manage-
ment and time tracking of various issues. Redmapmsitory comprises data on
various issues, versions, projects, user roles, ltetan be supplemented with ex-
tension fields, attachments, communication messagesThe whole repository is
based on almost 60 tables. An important featutkesapability to extend the data
model (overall repository model is fixed, howevesitom fields can be defined).
Redmine repository is used for tracking requirermemtd their analysis. It is help-
ful to create work items and assign them to dewatm@RRedmine includes tables for
storing data changes describing related issues. flihctionality is very useful for
tracking and analyzing changes, comparison of i@ws etc. Redmine provides
also the ability to create and store wiki pages.

The Redmine includes different type of timelinesan@ charts, calendar,
roadmap, deadlines, and other features that helpitkg track of what's going and
what is the status of the project. Redmine suppass assignments, bug-tracking
and ticketing, allowing project managers to traokgoess of each feature, problem
handling, and plan resources in advance. Redmis@lsa functionalities for vari-
ous notifications (e.g. emails, RSS feeds) and mheci management. Like
TestLink, Redmine can be configured to protectitigaata.

Mantis Bug Trackeris a bug tracking system (https://www.mantisbflorg
which can serve also as a project managementitalpports and integrates with
many web based version management systems (eMy. SitHub, SourceForge),
and admits integration of options (plug ins). Somechanisms are available to
visualize relations between various issues andgpeegocumentation (it includes
change logs, audit trials, related to registersdiés). They also provide multi-
level access control, built-in search engines apont generation.

In Mantis Bug Tracker we can distinguish two repmses. The first one
comprises tables with bug data. Information on bregs be extended with custom
fields, notes, attachments, etc. Some tables kdepmation on versioning, chang-
es of data about bugs, relationships between beigs ¢ommon source of two
bugs). The second repository relates to projecfigaration (including hierarchy,
user roles, profiles and preferences). Additioeahnical tables relate to configura-
tion data about plugins, email and other notifimatiata.

TRAC is a bug tracking system (http://trac.edgéwad) with project man-
agement features. It allows to track changes imeiskescriptions, and also can help
creating links (and integrate) between bugs, taskanges, related files. One of

175

functionalities of the TRAC is a timeline, that sf®all current and past project
events (gives an overview and tracks the projeognaesss). TRAC provides a
roadmap, which shows the plans ahead, lists themipg milestones, etc. It in-
cludes advanced hyperlinking options (to hyperlinformation between bugs,
revisions and wiki contents), fine-grained pernasesi options and customized
reporting.

In TRAC the progress of individual bugs, requestsd other issues, are
tracked using unique tickets (sequential numbé&agh detected problem receives
a ticket. All changes for bug (ticket) are recordedl they can be viewed in the
timeline for its status changes. There is alsongpls way in TRAC, to connect
overlapping tickets (where users report the sarmgthTRAC has also extensive
searching and filtering options for tickets by vens severity, owner, project com-
ponent or priority. One of the unigue things of TR a timeline of each individ-
ual ticket. Project changes can be viewed in relewato chronology of events
(code changes highlighted). TRAC provides GUI foovising and management
version management tools (e.g. SVN, CVS, Git oeotBCM systems). TRAC
capabilities can also be extended with plugins.

We had a possibility of analysing several repogtocollected during devel-
opment and maintenance of some real projects. We foaind that they comprise
a lot of data and that the companies used theniiiited way. Hence, we decided
to drill down the contents of these repositorieageess the value of the comprised
information as well as to propose some measurear@hevaluation schemes (dis-
cussed in section 4). As compared with publistesdlts in the literature we have
observed the possibility of more detailed and fijngined analysis.

4. Analyzing project repositories

We have analyzed many repositories of real projgci®: two companies.
Here, we concentrate on 13 projects within thisugrprojects P1-P11 were man-
aged using custom tool similar to Redmine, howdvethistory of state changes of
problem reports have not been registered, projé2t Bsed Mantis Bug Tracker,
and P13 TestLink tool. In classical approachesastlise the notion of failure,
bug or error, we have generalized this notion ablpm. In particular, the regis-
tered problem after analysis may be rejected alfaidentified (e.g. due to in-
competence of tester or user) or not important.lyxirdg problem handling we
distinguish user and tester perspectives and tedated handling processes which
in practice may involve many intermediate statestisig from registration, analy-
sis, correction, validation, inclusion in the redeaetc. In the literature problems
(bugs) can be open or closed. In the analyzed gigojee distinguish many reasons
for closing problems, which better describe develept and maintenance process-
es. Various statistics we have published in [Bi¥{his section we give other com-
plimentary statistics and interpretations. Moreowee identify the lacking infor-

176

mation which could improve assessment of developmed maintenance process-
es, the more that many tools (section 3) give amssibility, unfortunately ne-
glected in practice.

Tools related to managing software testing (e.gtliek, compare section 3)
provide the capability of tracing the progressesiting, e.g. plots of executed test
scenarios, test cases in time in relevance tosbenaed deadlines, correlation with
system modules, correlation with testers, etc. itaresting issue is to identify the
statistics of test distribution results. In gengved can distinguish passed (P - no
problem identified), failed (F - incorrect behavafrthe tested object) and blocked
(B - test cannot be completed due to some probkmdack of cooperating mod-
ule) tests. This is illustrated in tab. 1 for prtj@13. Columns show the results for
the specified weeks. The test preliminary phasateslto weeks 1-29 and covers
small number of executed tests due to tester legmadtivities. Failed and blocked
tests result in registration of the problem andating its handling, which is usual-
ly handled by other tools (e.g. Mantis BT, TRAC¢tsen 3) and is discussed later
on. Usually, resolution of blocked tests problemsimpler than the failed ones
(e.g. code correction needed). Having collecteth statistics on testing we can get
some hints for predicting the number of problemguimction of designed test cas-
es. This prediction could be more precise if cated with complexity of tested
modules (e.g. lines of code, McCabe or Halsteadsorea [8,9]), unfortunately
this is scarcely available information in reposi@sr Another issue is measuring
engagement of testers (e.g. man hours), usuallgctegd in repositories.

Table 1. Distribution of test results in time for project®

week | 1 11 14 26 30 31 32 34 35 36
B 1 1 0 0 0 7 0 0 45 0

F 2 1 1 1 3 9 0 26 13 3

P 1 8 1 0 82 65 6 52 11 14
week | 37 38 39 40 41 42 43 44 45 46
B 109 75 69 27 24 0 0 0 0 0

F 76 34 7 a7 11 2 0 0 0 0

P 220 124 134 156 97 3 23 9 15 12

Analyzing problem handling processes we use PH@hgrésection 2). In the
case of project P12 we had relatively rich inforiovatin the repository to trace
problems in detail. The complete PHG graph comgriag states (nhodes) and 280
edges. However, many states have been visitedsbyal number of problems, so
they do not describe typical situations. Hence hawe introduced the capability of
analyzing reduced graphs e.g. taking into accouspexified nhumber of related
problems. In fig. 1 we give such graph assumingimim 50 problems in a node
(it is worth noting that the total number of regigtd problems was about 4000).
The edges of the graph are labeled with perceptaiflems transferred to another
node. Such graph visualizes typical problem hagdpaths. The developed tool

177

allows us to trace also processing times in eadendominating paths, etc. The
nodes of the graph relate to the following stapesblem registration (S4), general
analysis (S5), request for additional informati@®6), problem withdrawing (S7),
code correction (S8), fix prepared (S9), fix upled (S10), problem reopened
(S11), transfer to test preparation (S12), tectracalysis - it involves IT envi-
ronment (S13), testing (S14), testing suspende8)($toblem completed (S16),
rejection acceptance (S20). In graph of fig. 1 weehdeleted states S1-S3 of initial
analysis. Moreover, transitions (incoming and camaut) related to nodes with
less than 50 problems are not included.

39.1%

63%

291%
9 o Qﬂ.

36.5% 95.3%

Figure 1. Reduced PHG graph for P12

An interesting issue is to identify and analyze kbeping in problem han-
dling, which is neglected in the literature, howeiteshows some problems in han-
dling processes. In project P12 we have identifi2dO loops which involved from
2 to up 12 states. Each loop can be characteriyeidsbstructure (sequence of
states) and saturation (number of circulating prots), for each problem we could
also check the number of iterations in the loopweler, in most cases it is one.
The loops with the highest saturation (shown in bers) are as follows:

{S5|S7|S11|S5} — 403; {S5|S6|S5} - 306;

{S7|S11|S5|S7} - 258; {S13|S7|S11|S13} — 232;
{S5|S8|S9|S10[S12|S14|S11|S5} — 210;

{S14|S15|S14} — 206; {S11|S5|S7|S11} — 180;
{S13|S6|S13} — 162; {S13|S5|S13} — 155;
{S7|S11|S13|S7} — 134; {S14|S11|S5|S8|S9|S10|SA2SI29;
{S12|S14|S11|S5|S8|S9|S10|S12} — 111; {S6|S5|36p:-

It is worth noting that 881 loops involved only iagle problem. There were
259 loops with 2-10 problems, 17 with 11-20 prolde4 with 21-99 problems,

178

and 13 with more than 100 problems. In this lasug the average circulation
time was in the range 0.34-2.9 days. Minimal ancimal times were 0 and 65
days, respectively, Relatively higher average timesurred for loops with low
saturation.

Another issue is comparing development and maames processes over
many projects, or program modules. We had suchilpligsin relevance to pro-
jects P1-P11. As compared with project P12 the munad problem states was
lower (8 states), moreover information on statenglea was not available, however
for each problem we had its appearance and compléthe stamps, problem de-
scription, completion reason, etc. Despite thesitdtions we could derive some
interesting features. In particular, we have com@athe number of registered
problems by testers (T) and users (U). The rati®d gives some measure on
maintenance problems in relevance to test effantise during development. We
illustrate this for selected projects (P3, P8,)P$0bsequent numbers show U/T
ratio for the specified modules (Mvithin the projects:

* Project P3: M—0.43, M-0.31, M -0.34, M — 0.06, M — 0.78, M — 0.30,
M;—0.20

* Project P8: M—-0.32, M- 0.58, M —0.44, M — 0.18, M — 0.61, M — 0.86,
M7;—0.63, M— 0.32, M— 0.33, My—2.23

* Project P10: M—0.15, M —-0.96, M- 0.27, M - 0.52, M — 0.86,
Me—0.12, M — 0.33

In the presented statistics (profiles) the modakesordered according to de-
creasing number of problems detected by testerslites with lower number of
problems are not included). In most projects thygstered problem reports for the
first modules dominate from 67 to over 90%. Wendb present data for modules
with less than 10 problems. It is worth noting timaP10 the second module (379
registered problems by testers) generates also praiems by the users (mainte-
nance phase), the first module seems to be maedle(689 tester problems ver-
sus 106 user problems).

The efficiency of handling problems can be viswediin a plot of open prob-
lems (i.e. remaining unresolved) in time. Thisllisstrated in fig. 2 for system P3
with time scale in months. An important issue istorelate this plot with intro-
duced revisions, they are shown as small rectamgldee upper part of the figure.
Unfortunately, the related code complexity was regorted. In months 70-90
some increase of unresolved problems is obserhésl,queue has been handled
quite effectively in subsequent few months. Frommth®1 the system shows good
stabilization with a negligible number of open desbs.

We can also look at the activities of testers asgrsiin revealing problems.
For an illustration in fig. 3 we give the distribar of problems detected by indi-

179

vidual testers and users ordered in a decreasiggltva typical that some of them
dominate (uneven distribution). Moreover, highemier of detected problems by
testers than users confirms good testing effectisen

80 111 _— T T T T R R T e PO T e R P IR P T E R PR 1

[T
(=0 =

al sl allaiiobasials

o ([T |H|m||||||h|I||| |||HHH|I’|

16 21 26 31 36 41 46 B 71 B6 91 9 101 106 111

Figure 2. Distribution of open problems in time for projé&t3

300

200 B

100

12 3 45 67 8 910111213141516171819 2021 2223 242526 2728 29

Figure 3. Distribution of revealed problems by 29 testefack bars) and users
(dashed bars) for project P3

Table 2. Distribution of specific problems in projects P4-P

DP NR NI RE RO

U T U T 9] T U T U T
P1L | 70% |98% |33% |26% |00% |06% |03% |02% | 45% 1.0%
P2 | 18% |81% |23% |1.8% |05% |0.4% | 0.05% | 0.2% | 27.6% | 8.2%
P3 | 55% |98% |24% |24% |01% |[05% |1.2% | 1.7% | 0.1% 0.7%
P4 | 145% | 9.7% | 6.8% | 2.8% | 0.0% | 0.4% | 0.0% | 0.4% | 10.7% | 4.8%

The completed resolved problems can be categoraedrding to ways
(methods) of resolving them, e.g. correction ineldiéh the deployed version, cor-
rection waiting for deployment. It is worth notitigat handling of many problems
does not involve code corrections, so their coats lse low. In particular they
relate to: DP - disqualified problems (falsely sifgd, non-existing), NR — non
reproducible problems (cannot be invoked for thecdbed situation), NI — related
to not important (or not used) functionality, REejected due to excessive mitiga-
tion costs, RO — rejected due to other reasonstain2 we give their statistics
in percent for projects P1-P4 in relevance to mwid notified by users (U) and

180

tester (T). It is worth tracing the reasons of algig DP, NR, NI and RO prob-
lems. Moreover, we have duplicated problems whiebdnonly identification and
resolving only the representative instantiationtHe considered projects P1-P11
they contribute from a few up to 12 percent.

5. Conclusion

Having analyzed collected data in data repositoeésed to various projects
(some of them are specified in [7]) we have idésdithat these data are helpful in
managing and evaluating the quality of the progxtwell as development and
service schemes. As compared with published repotise literature we identify
more useful information and propose more metritgs allows us to identify defi-
ciencies in problem handling processes and avadctm new projects. On the
other hand this analysis shows some shortage lefctedl data which results in the
accuracy of modelling or result interpretationphrticular, the history of problem
state changes was available only for one projecteaver information on the size
and complexity of modules and code corrections msavailable. The presented
methodology is quite general and can be adaptedifferent development and
maintenance schemes.

Further research is targeted at deriving charatterieatures of developed
code (e.g. various complexity measurers) and t@grage measures in order to
include them in collected data of project repogit®r This may facilitate finding
more accurate models supporting project management.

REFERENCES

[1] Bluvband Z., Porotsky S., Talmor M. (201Aj)lvanced models for software reliability
prediction Proceedings of IEEE Annual Symp. on ReliabilitglaMaintainability.

[2] Espinosa-Curiel I. E, Rodriguez-Jacobo J., Ferra@@peda J. A. (2013) frame-
work for evaluation and control of the factors thiafluence the software process im-
provement in small organizationdournal of Software Evolution and Process, 25,
393-406.

[3] Ferrer J., Chicano F., Alba E. (201B3timating software testing complexityfor-
mation and Software Technology, 55, 2125-2139.

[4] Gupta A., Kapur R., Jha P.C. (2008pnsidering testing efficiency and testing re-
source consumption variations in estimating sofevaaliability, Int. Journal of Reli-
ability, Quality and safety Eng., vol. 15, no. Z-91

[5] Houston D. (2014A generalized duration forecasting model of tesi-fir cycles
Journal of Software Evolution Process, 26, 877-889.

[6] Janczarek P., Sosnowski J. (20Mbdnitoring Software Development and Usage
Przeghd Elektrotechniczny, Sigma NOT, vol. R. 90, nol2,7-120.

181

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]

Janczarek P., Sosnowski J. (20IrB)estigating software testing and maintenance re-
ports: Case studyinformation and Software Technology, vol. 58, 2728.

Kan S. H. (2003Metrics and Models in Software Quality Engineerifgldison
Wesley.

Kozlov D., Koskinen J., Sakkinen M., Markula J. @8) Assessing maintainability
change over multiple software releasdsurnal of Software Maintenance and Evolu-
tion, 20 (1), 31-58.

Krini O., Borcsok J. (2012\ew scientific contributions to the prediction bétrelia-
bility of critical systems which base on imperféebugging Proceedings of IEEE In-
ternational Symposium on Telecommunications.

Messquida A-L., Mas A. (2014 project management improving program according
to ISO/IEC 29110 and PMBQHKournal of Software Evolution and Process, 844-85

Ogasawara H., Kusanagi T, Aizawa M. (20R¥pposal and practice of software
process improvement history since 2006urnal of Software Evolution and Process,
521-529.

Petersen K. (2012) Palette of lean indicators to detect waste irtvgafe mainte-
nance: A case studg. Wohlin (Ed.): XP 2012, LNBIP 111, Springer-\égy Berlin,
Heidelberg, 108-122.

Pham H. (2006pystem Software Reliabiljtpringer.

Radjenovic D., Hericko M., Tprkar R., Zivkovic A2@13) Software fault prediction
metrics, a systematic literature reviewnformation and Software Technology, 55
1397-1438.

Sideratos I. G., Platis A. N., Koutras V. P. Ampalti. (2014)Reliability analysis of a
two-stage Goel-Okumoto and Yamada S-Shaped mW@deZamojski et al. (eds),
DepCos-RELCOMEX, Advances in Intelligent Systemd &omputing 286, Spring-
er, pp. 393-402.

Sommerville I. (2011poftware engineerin@®th edition, Pearson, Boston.

Sosnowski J. (2006)estowanie i niezawodb systemdédw komputerowychxit (in
Polish).

Sosnowski J., Sabak J. (20®9ftware reliability analysis in designing database
ented applicationsProc. of the 27th Euromicro Conference, IEEE CoSpciety,
166-173.

182

