Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 Mereology and Beyond (II) | 259-283
Tytuł artykułu

The mereology of structural universals

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explores the mereology of structural universals, using the structural richness of a non-classical mereology without unique fusions. The paper focuses on a problem posed by David Lewis, who using the example of methane, and assuming classical mereology, argues against any purely mereological theory of structural universals. The problem is that being a methane molecule would have to contain being a hydrogen atom four times over, but mereology does not have the concept of the same part occurring several times. This paper takes up the challenge by providing mereological analysis of three operations sufficient for a theory of structural universals: (1) Reflexive binding, i.e. identifying two of the places of a universal; (2) Existential binding, i.e. the language-independent correlate of an existential quantification; and (3) Conjunction.
Rocznik
Tom
25
Strony
259-283
Opis fizyczny
Daty
online
2015-05-27
Twórcy
Bibliografia
  • Armstrong, D., Universals and Scientific Realism, Vol. II. A Theory of Universals, Cambridge: Cambridge University Press, 1978.
  • Bigelow, J., “Towards structural universals”, Australasian Journal of Philosophy, 64 (1986): 94–96. DOI:10.1080/00048408612342291
  • Caplan, B., Ch. Tillman, and P. Reeder, “Parts of singletons”, Journal of Philosophy, 107 (2010): 501–533.
  • Cotnoir, A.J., “Anti-symmetry and non-extensional mereology”, The Philosophical Quarterly, 60 (2010): 396–405. DOI:10.1111/j.1467-9213.2009.649.x
  • Cotnoir, A.J., and A. Bacon, “Non-wellfounded mereology”, Review of Symbolic Logic, 5 (2012): 187–204. DOI:10.1017/S1755020311000293
  • Forrest, P., The Necessary Structure of the All-pervading Aether: Discrete or Continuous? Simple or Symmetric?, Ontos, 2012. DOI:10.1515/9783110325928
  • Forrest, P., “Exemplification and parthood”, Axiomathes, 23 (2013): 323–341. DOI:10.1007/s10516-013-9215-6
  • Franklin, J., An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure, Palgrave MacMillan, 2014. DOI:10.1057/9781137400734
  • Lewis, D., “Against structural universals”, Australasian Journal of Philosophy, 64 (1986): 25–46. DOI:10.1080/00048408612342211
  • Lewis, D., Parts of Classes, Blackwell, 1991.
  • Obojska, L., “Some remarks on supplementation principles in the absence of antisymmetry”, Review of Symbolic Logic, 6 (2013): 343–347. DOI:10.1017/S1755020312000330
  • Sober, E., “Why logically equivalent predicates may pick out different properties”, American Philosophical Quarterly, 19 (1982): 183–189.
  • Thompson, J.J., “The statue and the clay”, Nous, 32 (1998): 149–173. DOI:10.1111/0029-4624.00094
  • Tillman, Ch., and G. Fowler, “Propositions and parthood: The universe and antisymmetry”, Australasian Journal of Philosophy, 90 (2012): 525–539. DOI:10.1080/00048402.2011.611812
  • Varzi, A., “The extensionality of parthood and composition”, The Philosophical Quarterly, 58 (2008): 108–133. DOI:10.1111/j.1467-9213.2007.542.x
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-d3a10711-22f6-4030-b92f-7cff7333353d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.