Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 | 69–80
Tytuł artykułu

Powerset residuated algebras

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an algebraic approach to canonical embeddings of arbitrary residuated algebras into powerset residuated algebras. We propose some construction of powerset residuated algebras and prove a representation theorem for symmetric residuated algebras.
Rocznik
Tom
23
Numer
1
Strony
69–80
Opis fizyczny
Daty
wydano
2014-03-01
online
2013-09-17
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University ul. Umultowska 87, 61-614 Poznań, Poland , mkolowsk@amu.edu.pl
Bibliografia
  • Abrusci, V.M., “Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic”, The Journal of Symbolic Logic, 56 (1991), 4: 1403–1451. DOI: 10.2307/2275485
  • Bimbó, K., and J.M. Dunn, Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi, CSLI Publications, 2008.
  • Bimbó, K., and J.M. Dunn, “Symmetric generalized Galois logics”, Logica Universalis, 3 (2009): 125–152. DOI: 10.1007/s11787-009-0004-3
  • Buszkowski, W., “Interpolation and FEP for logics of residuated algebras”, Logic Journal of the IGPL, 19 (2011), 3: 437–454. DOI: 10.1093/jigpal/jzp094
  • Buszkowski, W., “Many-sorted gaggles”, Link
  • Galatos, N., P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, vol. 151, Elsevier, Amsterdam, 2007.
  • Grishin, V.N., “On a generalization of the Ajdukiewicz-Lambek system”, pp. 315–343 in Studies in Non-Commutative Logics and Formal Systems (in Russian), Nauka, Moscow, 1983.
  • Kołowska-Gawiejnowicz, M., “Powerset residuated algebras and generalized Lambek calculus”, Mathematical Logic Quarterly, 43 (1997): 60–72. DOI: 10.1002/malq.19970430108
  • Kołowska-Gawiejnowicz, M., “On canonical embeddings of residuated groupoids”, to appear.
  • Kurtonina, N., and M. Moortgat, “Relational semantics for the Lambek-Grishin calculus”, pp. 210–222 in The Mathematics of Language, Ch. Ebert, G. Jäger and J. Michaelis (eds.), Lectures Notes in Computer Science, vol. 6149, 2010.
  • Lambek, J., “On the calculus of syntactic types”, pp. 166–178 in Structure of Language and Its Mathematical Aspects, R. Jacobson (ed.), AMS, Providence, 1961.
  • Moortgat, M., “Symmetries in natural language syntax and semantics: Lambek-Grishin calculus”, pp. 264–284 in Proceedings 14th Workshop on Logic, Language, Information and Computation, Lectures Notes in Computer Science, vol. 4576, Springer, 2007.
  • Orłowska, E., and I. Rewitzky, “Algebras for Galois-style connections and their discrete duality”, Fuzzy Sets and Systems, 161 (2010): 1325–1342. DOI: 10.1016/j.fss.2009.12.013
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-bbdc82ba-d6ae-4716-ae6b-2cdf37ab3685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.