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PRELIMINARIES*

§ 0. Introduction

Together with generalizations of Banach spaces one may consider
corresponding generalizations of Banach algebras. This paper is devoted
mainly to two metric generalizations of these algebras: locally bound-
ed complete algebras and completely metrizable locally convex alge-
bras. The class of Banach algebras is precisely intersection of these
two olasses as it follows from the theorem of Kolmogoroff stating that
a topological linear space is a4 normed space if and only if it is both locally
bounded and locally convex.

The paper covers material of lectures given by the author at Yale
University in second term of 1963/64, it containg the earlier results
of the author on above topics as well as some new ones. For sake of
completeness there are given also some results of other authors: § 10
and in part § 11 are adopted from the paper of Michael [15], also some
single theorems and examples are taken from the papers of Arens, Ba-
nach, Mitiagin, Rolewicz and Williamson.

Chapter I is devoted to the theory of locally bounded complete
algebras. The essential results of this chapter were published by the
author in papers [28]-[31]. Theorem 2.3 (due to A. Pelezynski) states
that a complete locally bounded algebra is a p-normed algebra, i.e. its
topology may be given by means of a p-norm, 0 <<p <1, satisfying
leyll < liellllwll, ¢zl = |8|?||x||, where x,y are elements of the algebra
in question, ¢ a scalar. As it may be seen through this chapter, all basic
facts true for Banach algebras are algo true for p-normed algebras. So the
theory of wider class of p-normed algebras is the same as the theory
of its subelass of Banach algebras. This follows that in the theory of Ba-
nach algebras essential is the fact that they are locally bounded spaces
and the fact that they are locally convex is meaningless.

In the short chapter II are discussed some basic properties of com-
plete metric algebras (F-algebras) to which is devoted § 7, and some
topics on topological division algebras (§ 8). Among new results of this

* This paper is partially supported by NSF Grant N 25222.



4 Preliminaries

chapter we mention theorem 7.3, generalizing our earlier result on
p-normed algebras ([28], theorem 2) on the possibility of completion
of a metric algebra, and the concept of generalized topological divisors
of zero together with theorem stating that a topological division algebra,
over real scalars either possesses such divisors or is homeomorphically
isomorphie with either of three trivial division algebras (reals, complexes
or quaternions). The last statement is an excuse for replacing this chapter
after the first one, since in its proof we apply some results on p-normed
algebras. The chapter contains also Arens’ theorem on joint continuity
of multiplication in I-algebras, and theorem of Banach stating that
the operation of taking inverse in an F-algebra is continuous if and only
if the set of all invertible elements of the algebra in question is a (;-set.
The proof presented here is a combination of the original proof of Banach
[5] and that of the author (lemma 7.5) published in [32], with a refine-
ment made by Gleason when reviewing [32] (MR 23A (1962) H A3198).
Proposition 8.6 is the generalization of a theorem of Arens [2].

The. greatest portion of material and most of the new results are
contained in chapter III devoted to completely metrizable locally convex
algebras (B,algebras). In § 9 we give some basic preliminaries due to
the author (cf. [28] and [32]). Next two sections (§ 10 and § 11) are de-
voted to multiplicatively-convex (m-convex) B, -algebras. Theory of
m-convex locally- convex was created by Arens [3] and Michael [15].
The results of § 10 and partially of § 11 (proposition 11.2, theorem 11.8,
and proposition 11.12) are adopted from [15]. Theorem 11.4 seems to
be new. New is also concept of extension property (definition 11.10)
and theorem 11.14 stating that m-convex Bj-algebra has extension prop-
erty if and only if it is not a @-algebra. Example 11.7 is due to Rolewicz
[23]. In §12 we discuss three examples of non-m-convex B,-algebras.
They are due to Arens [1] (example 12.1), to the author [28] (example
12.2), and to Williamson [26] (example 12.3). In § 13 there is given
@ characterization of commutative m-convex B,-algebras as these algebras
in which operate all entire functions of one variable. Theorem 13.8,
giving this characterization, was published in the joint paper of Mitiagin,
Rolewicz, and the author [17]. Other results of this section, as well as
of remaining sections are new. Among them we mention the concept
of extended spectrum (definition 13.1, proposition 13.2, theorem 13.5),
and some applications of the characterization of m-convexity, as theorem
13.17 stating that any commutative By-algebra which is a -algebra
must be necessarily multiplicatively-convex, and theorem 13.18 stating
that any commutative radical algebra of type B, must be m-convex.
In § 14 to a By-algebra 4 is attached an algebra & (4) of all entire functions
operating in 4 and given some elementary properties of &(4). £(4) is
called #révial if it consists only of polynomials. There is given following
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characterization of commutative Bj-algebras having non-trivial
#(4): 6(A) is non-trivial if and only if in A there exists an equiv-
alent system of pseudonorms |z|; satisfying

lzr 225 - .. Dpll; < il lls 1 llelligy - nlls 1

for arbitrary 2,,...,w,e4, where (,; are positive constants. There is
also given a suitable characterization of algebras with trivial #(4). In
§ 15 by means of enfire operations there are given solutions of two prob-
lems stated in [17]: it is proved that entire functions are continuous
mappings, and that superposition of two entire functions operating in
a B,-algebra again operates in the same algebra. The method ueéd here
is similar to that of the book of Hille and Philips [9], and was suggested
to the author by S. Mazur, who also noticed that the use of more general
concept of entire operations simplifies the problem. The proof of theorem
15.3 is the reproduction in a slightly simplified form of the proof
communicated to the author by Professor 8. Mazur. In § 16 are posed
some unsolved problems (some problems were stated also through the
paper), and proved some facts concerning these problems.

§ 1. Definitions and notation

1.1. DEFINITION. A topological algebra is a topological linear space
equipped with an associative separately continuous multiplication ay
satisfying (Az)(uy) = Auwy, where A, u are scalars and z,y— elements
of an algebra. As the field of scalars we assume the field of complex
numbers, only in a few places we shall consider algebras over field of real
numbers.

1.2, DEFINITION, If ¢ is any class of topological linear spaces, then
by g-algebra we ghall mean a topological algebra, which underlying
linear topological space belongs to the class g. Applying a standard
technique of taking direct products, we may imbed any topological algebra
into an algebra with unit. So, through this paper, we shall assume that any
considered algebra possesses the unit element denoted by e. Since usually
considered classes of topological linear spaces possess the property that
the direct product of a space with the complex plane again Dbelongs to
the class in question, in the most interesting cases algebras obtained
from g¢-algebras by the process of adjoining unit are also g-algebras.

Taking as ¢ the class of Banach spaces we get as g-algebras the
Banach algebras, if g is the class of locally bounded or the class of locally
convex gpaces, we get locally bounded algebras or locally convex
algebras, etc.



CHAPTER I

LOCALLY BOUNDED ALGEBRAS

§ 2. Basic facts and examples

2.1. DermviTiON. Let X be a topological linear space. A subset
Y < X is said to be bounded if for any neighbourhood U of zero element
in X there is a scalar A such that AY = U or, what is equivalent, if for
any sequence (z,) of elements of Y, and any sequence of scalars (4,),
with lim A, = 0 the sequence of elements (4,z,) tends to zero in X.

2.2, DeFmNITION. A topological linear space X is called locally bounded
if there exists a bounded neighbourhood U of zero. In this case the family

{—1- U},n =1,2,..., forms a basis of neighbourhoods of zero in X,
n

and consequently X is metrizable. It is known (see [21] or [10], p. 162-
166) that a topological linear space is locally bounded if and only if
its topology may be given by means of a p-homogeneous norm |z,
0<p <1, ie. functional satistying

(2.21) |z[>=0, and |z|=0 if and only if « =0.

(2.2.2) le+yll < llzlt+ |lylf.
(2.2.3) Aol = [APll=fl, O0<p <1 (p is fixed).

So a complete locally bounded space is a special case of an F-space
(cf. definition 7.1) in which the topology is given by means of a norm
satisfying (2.2.1), (2.2.2), and such that |Az| is a function continuous
in two variables A and z.

The following theorem characterizes the complete locally bounded
algebras.

2.3. THEOREM. Let A be an F-algebra; then the following conditions
are equivalent:

(2.3.1) There is an A in equivalent metric o(xz,y) giving its topology
and satisfying

e(my, 0) < o(@, 0)o(y, 0).
(2.3.2) A is locally bounded.
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(2.3.3) T'he topology in A may be given by the means of a p-homogeneous
(0 < p < 1) norm satisfying

leyll < llelllyll  and |l = 1.

Proof. (2.3.1) - (2.3.2). It is to be shown that under assumption
(2.3.1) there is in 4 a bhounded open set. So we shall show that the unit
ball

K ={z:0(z,0) <1}

is a bounded subset of 4. Indeed, let (4,) be a sequence of scalars tending
to zero, and 2,¢I{. We have to show that 1,2, tends to zero in A but
it follows from the inequality

0(4n2p, 0) = o(2re'2,, 0) < (A€, 0)o(z,, 0) < e(@,e, 0),

and from the fact that 1, e tends to zero in 4. So we have proved (2.3.2).
Now suppose that A is locally bounded, so there exists an equivalent
p-homogeneous norm |jzl|. We put now

fleyll’
2.3.4 Ay
( ) el 7}3? llyll’

As it may be easily verified it is a submultiplicative and p-homo-
geneous norm for which |e| = 1. The proof that |z| is equivalent with
|lz)|" is the same as in the Banach algebra case. We have || = |l|'llel’,
so it is sufficient to show that A is complete in the norm |jz| (cf. [4],
p. 41). We may interpret 4 as a subalgebra of the algebra of all linear
operators 4 — A, interpreting any zed as operator L,: L,y = xy.
The norm |[jzl| is operator norm of L;. Let L, — L in || |[. It is to be
shown that L is of the form IL,. But for any »,yeAd we have L(zy)
=limL, (wy) = HimL, (z)'y = L(z)'y. Setting « =e¢ we have L(y)
= L(e)'y and L is of desired form. It shows that 4 is complete in || ||,
and || || is equivalent with || ||'. So (2.3.2) implies (2.3.3). That (2.3.3)
- (2.3.1), it is evident. Thus the theorem is proved.

24. Remark. The general assumption that considered algebras
possess unit elements is here essential. Indeed, taking any completely
metrizable non-locally bounded space X, and setting 'y = 0 for any
z,yeX we get an F-algebra satisfying (2.3.1) but not satisfying (2.3.2).

2.5. COoROLLARY. BEvery complete locally bounded algebra is algebraically
and topologically isomorphic with a closed subalgebra of the algebra of all
linear bounded operators of a locally bounded space into itself.

As an equivalent term with a “complete locally bounded algebra”
we shall use the term “p-normed algebra®.

We shall now give some examples of p-normed algebras.
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2.6. ExamMPLE. The algebra 1,, 0 < p <1, of all two-sided sequences
& = (T,)1°_ o of complex numbers satisfying

[oo|| = Elmnlp< o0,
»n

with the multiplication defined as convolution.

2.7. ExAMPLE. The algebra A,, 0 < p <1, of all holomorphic funec-
tions in the unit disc

z(l) = i‘wm

Ne={

such that
”w" = 2 |mn|1’< o0,
7n

with the pointwige multiplication.

2.8. ExAMPLE. The algebra B(X) of all bounded linear operators
of a locally bounded space X into itself.

§ 3. Commutative p-normed algebras,
spectral norm and p-normed field

In this section we assume A to be a commutative p-normed algebra
over complex scalars equipped with the norm satisfying (2.3.3).

3.1. DEmiNiTION. Let
I, = {xed : lim|z"| = 0};

the spectral norm |jv||; of A is defined as a p-homogeneous norm having
K, as the unit ball. Namely we put

Il = (sup{|A] : Aze o))",

To simplify our considerations we shall prove the following

3.2. LEMMA. weK, if and only if there exists an inieger n, such that
™l < 1.

Proof. In faet, if z<XK,, then (") — 0 and such an integer exists.

If {lz™|| < 1, then [&*™0|| < |la™|* -0, and setting M = max|jz} we
l<n
have for any integer m = kn,+1, 1 < n,, D

2™ = llg*"o*Y < M |jz*™0| -0, q.e.d.

We shall prove the essential
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3.3. THEOREM. The spectral norm |jx|l; has the following properties.

(3.3.1) lells < 1 if and only if weK,.
(3.3.2) llAzlls = 121 llocl, -

(3.3.3) e+ ylls < [llls=+ [1¥lls-
(3.3.4) leylls < lills llylls -

(3.3.5) 2"l = llzllz -

(3.3.6) lells < [l

(3.3.7) If a7 'eA, then ||, >0.
(3.3.8) lell, = LimV[2"

Proof. Ad (3.3.1). It follows immediately from definition (3.1),
and from the fact that I{, is open; (3.3.2) is also obvious.

Ad (3.3.3). In virtue of (3.3.2), ||, i§ p-homogeneous, so it is
sufficient to show that ||z||;+ llyll, < 1 1mphes lz+yils < 1. Let ||a:||, = a,
Iylls = B; it is a+-f< 1. We choose a and f in such a way that a > a,
f>p, and a+p <1, and define # and 7 by the relations

x =alz, y=p"y,

R0 ||Z|ls < 1 and |[7]s < 1. Tn presence of lemma 3.2 it is sufficient to find
an integer N such that

(3.3.9) e+ 9V < 1.

For this purpose observe that

ki

(3.3.10) {lz+y)"l = W z+B77)"| <2(§) "k gh kg
k=0

Since from (3.3.1) it follows that ||Z|" — 0 and {7"| - 0, we have
a = ma,x||x”|| < oo and b = max|7"|| < oo, and we can chooge m, and 7,

such thfut

1
12" < Yy for n >m,,

1
||g7"]|<; for n > n,.

Thus for N = m,-+n, we have

(3.3.11) #V*7| <1 for k=0,1,...,N
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)
Consequently, since (l]\c’) < (1,:7) for 0 < p <1, we get from (3.3.10) that

le+9)" < 3 (3) "6 = (a+8) <1,

and (3.3.9) holds.
Ad (3.3.4). In view of p-homogeneity of ||z[, it is sufficient to show

that folls < 1 and [lyll, < 1 imply |oy|ls < 1, but it follows from the fact
that £” — 0 and " — 0 imply (ay)" — 0.

Ad (3.3.5). Again in view of p-homogeneity of |z, it is sufficient
to show that [j2"|, < 1 is equivalent with |z||, < 1, but both these relations,
by lemma 3.2, are equivalent with [&"]|< 1 for some N.

(3.3.6) follows immediately from the definition; (3.3.7) follows from
(3.3.4) and from the fact that |le], = 1.

Ad (3.3.8). The existence of the limit 1i1111;/|[:v”]| follows from the gen-
eral fact that for the sequence of reals a, satisfying a, ,r < a, @, it always
exists limVa:. So put |jz||* = ]imqi/u_w"m; it is a p-homogeneous functional
defined on A. If |z|* < 1, then ||z"| < 1 for large n, and so, by (3.3.1)
and lemma 3.2, ||; < 1. If |jz|* > 1, then |z"|| >1 for large n, and so,
by lemma 3.2 and (3.3.1), |lz|, > 1, this follows |jz|* = |l=|s, q.e.d.

Now we pass to the proof of a theorem on p-normed fields. The
proof here presented is a direct proof. Later on (in § 4) we shall give
another proof reducing the problem to the normed algebra case.

3.4. LEMMA. The set V of all invertible elements in A is an open set.

3.5. LEMMA. The operation x —> x~ ! is continuous on V.

The proofs are the same as in the Banach algebra case.

3.6. LEmMA. If A is a p-normed field, and A, is a closed subalgebra
of A, then A, is also a subfield of A.

Proof. Let zed,, © * 0. We have to show that 2~ 'e4,. Observe
that if #, -~ @, # 0, and if 2,"e4,, then by lemma 3.5 and completeness
of 4, it is #7'e¢d,. If ® = ae, a #£ 0, then 2> = a '¢ed,, 80 We may
agsume that z is not of the form Ze, and, for any complex A, (lz—e)~"
exists in 4. We put

A={1:(lz—e)ted,};

0, by our observation, /A is a closed subset of complex plane. On the
other hand, by lemma 3.4 it is an open set. Since Oed, it is non void
and hence it is whole complex plane. We thus have

1 -1
&t— —e A
( n ) 4o

and again by our observation s~ 'ed,, q.e.d.
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3.7. LeMMA. If A 18 a p-normed field, then for every complex A # 0,
every € >0, and every me A, x not of the form le, there exists a polynomial
W (A) with complex coefficients such thai

(3.7.1) lle— [e+aW (2)]7Y] < «.

Proof. Let o # Ae. Consider the closed subalgebra 4 (z) of 4 gen-
erated by z, i.e. the closure in A of the algebra of all polynomials with
complex coefficients of x. By lemma 3.6 it is a subfield of 4, so
z 'eA(z). Therefore, there exists a sequence of polynomials W, ()
tending to (A~'—1)a~'; hence «W,(x)+¢ - i"'e and, by lemma 3.5,
(xW,(2)+ €)' — Ze, so (3.7.1) holds for large n, g.e.d.

3.8. THEOREM. A p-normed field A is isomorphic and homeomorphic
with the complex number field.

Proof. Let wed. It is to be shown that for certain complex 1 we
have z = Ae. Suppose then that x 7 le for every A and try to get a
contradiction. We put

F(2) = @™+ Ae) " ls;
this is a continuous funetion of complex argument A. Moreover,

Hm f(2) = Um]A|~" (2" 2™ +e)"l, = 0,

|Al—>00
so there exists a A, such that f(4,) = f(1) for each 1. We put
Y = f(h) (@™ +Ae) 7,
so we have |ly|ls = 1, and
(3.8.1) I~ +2e) | < 1

for every complex A. We are going to show that there exists an n, such
that |y™|| < 1, what by lemma 3.2 and (3.3.5) would be the contradic-
tion completing the proof.

Let V,(A) be an arbitrary polynomial of the form

Va(d) = M4 44,
where a; are complex coefficients. We have
Vauly™") = (7" —pre) ... (¥~ Bue),
where f; are roots of V,, so by (3.8.1) we have
(3.82)  [[Valy ™I s <y —Hre) s oo Iy~ —Bae) s < 1.
On the other hand,

[Valy™ ]! = y"[e+y W, (y)] 7,
where

(3.8.3) Waly) = et ay+ ... +o,y" "
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For a given & >0 and given complex 1 we can choose a V, such
that for W,(y) given by (3.8.3) holds (3.7.1) with z =y.

Setiting _1
z = Ae— [e—?/Wu(?l)] y

we have
el < llell < e

It follows from (3.8.2) and (3.8.3) that

ly"(Ae—2)lls <1,
consequently
1> Ay —2y"lls = A7 Iy ls— llellsly"lls 2 (1417 — &) lly™]
Hence

N"
19"l < s
and by suitable choice of |A| and & we can make [jy"[l, < 1 which is the
announced contradiction, g.e.d.

In a similar way as in [2], proof of theorem 2, we may qbtain the
following generalization:

3.9. THEOREM. Let A be a p-normed division algebra over real numbers
field. Then A 1s topologically isomorphic either with real numbers field
or with compler numbers field, or with division algebra of real quaternions.

In the next section we shall generalize this theorem onto non-com-
plete p-normed division algebras.

§ 4. Commutative p-normed algebras (continued)

We shall list some applications of theorem 3.8 that are facts well
known in the case of Banach algebras, and the proofs arc actually the
same.

Let 4 be a commutative complex p-normed algebra; the following
propositions are easy corollaries to theorem 3.8:

4.1. ProPOSITION. Every ideal of A is contained in a maximal ideal.
Every maximal ideal is closed and of codimension 1, so there is a 1-1 cor-
respondence between multeplicative linear functionals and maximal ideals
given by

M = {zed : fy(a) = 0},
fau(@) =2, if @ =m+ e, meM, and this decomposition follows from the

fact that A = M @ {le}. Consequently each multiplicative and linear
functional is continuous.
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4.2. PROPOSITION. In A there exists at least ome (nom-zero) multiplica-
tive and linear funciional.

4.3. ProposITION. If M is the compact space of all mazimal ideals
of A (topologized exactly in the same way as in [7]), then there is a con-
tinuous homomorphism of A into algebra C(M) given by

(4.3.1) @z~ fu(n) = (M),
moreover
(4.3.2) sup lz(M)|” < il < lllf,

the kernel of @ is the vadical of A.

(We shall see later that the left-hand inequality of (4.3.2) is actually
an equality, so the radical of 4 is given by {z: |lz|, = 0}.)

4.4. PROPOSITION. An element me A is invertible if and only if ¢ (M) # 0,
MM or equivalently if and only if f(m) # 0 for each multiplicative
linear functional f (for each feIMM as we shall write for sake of brevity).

Similarly as in the Banach algebra case we shall apply proposition
4.4 to trigonometrical series and prove the following generalization
of Wiener’s theorem:

4.5. THEOREM. Let (i) be a complex function of real variable i,
0 <t.< 2n, equal to its Fourier expansion

(4.5.1) a(t) = ) w,e™

= —00

then from the fact that ) |,|” < oo for afzmed P, 0< p <1, and x(1) # 0,
0 <t< 2rn, it follows that

1 int
—_—= Ynt
Tl ; Y™,

2 I?/'nlp < oo,

n

Proof. Consider the algebra I, (example 2.6). It may be interpreted
a8 the algebra of functions of the form (4.5.1) with pointwise multipli-
cation. We shall show that every multiplicative and linear functional
in [, is of the form

(4.5.2) F(z) = Fy (v) = x(ty), 0 <1< 2n.

where

Put 2(t) = €*, it is an invertible element of ,. Let F be a multi-
plicative linear functional in A4; it is |F(2)| = 1. If |F(2)| > 1, then for
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suitable A, with [A|< 1, it would be |F(i2)] =1, which, by proposition
4.1, is impossible since (A2)" = 1*¢™ tends to zero in A. Consequently
\F(¢)] <1. Applying the same arguments to 2 '=e ", we get
IF(z"") <1 or |F(s)] =1, which gives |F(2)] =1 and F(z) = ¢*
= #(t,). Thus formula (4.5.2) holds for z and consequently for any

trigonometric polynomial

8
pt) = D pné™;
n=—K
thig follows that it holds for any zeA since polynomials of this form
are dense in A. So the conclusion follows now from proposition 4.4.
We are able now to give the following generalization of theorem 3.8:

4.6. TemoreEM. Let A be a locally bounded space (not mecessarily
complete) over complexes, which is an algebra with separately continuous
multiplication. Suppose that for any x # 0 there exists an inverse x~'.
Then A is topologically isomorphic with complex numbers field.

Proof. Itisto be shown that for any xed it is @ = le. Congider the
smallest division subalgebra of A containing x. It is a subfield, and we
denote it by 4 (z). Let |jz|" be a p-homogeneous norm giving the topol-
ogy in A4 (z). The norm |z given by formula (2.3.4) is a submultipli-
cative norm in A () (it must not be equivalent with |j||’). Let A De the
completion of A(#) in the norm || |. This is a commutative p-normed
algebra, containing algebraically A (®). Consequently, by proposition
4.2, there exists at least one non-zero multiplicative linear functional f.
This functional ig non-zero on 4 (x) since ee¢A(z), and it gives an iso-
morphism of A (z) with complex numbers field @ = Ae, where 1 = f(z).

4.7. Remark. Using the technique of [2], we may get under the
agsumptions of theorem 4.6 (with reals instead of complex coefficients)
the conclusion of theorem 3.9.

4.8. Remark. In proving theorems 3.8 or 4.6 we could not use the
stahdard tools of Riemann integral or of linear functionals, because
in non-locally convex spaces there always exist continuous functions
defined on the compact interval [0,1] which are not Riemann-inte-
grable, and there are also situations (as in L,(0, 1)) in which there are
no continuous linear functionals. So we are¢ not sure of the existence
of suitable integrals. However, as the author was informed by S. Ro-
lewicz the integrals in question do exist and the theory may also be
based upon their existence (cf. [34]).

We shall now pass to the characterization of radicals in commuta-
tive p-normed algebras. We recall that in the commutative case the
radical rad4 is the intersection of all maximal ideals, or {weA4, that
for any yeA there exists (¢e+ay) 'ed}.
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4.9. THEOREM. Let A be a p-normed commutative algebra; then

(4.9.1) rad A = {xed : ||z, = 0}
and
(4.9.2) lzlle = sup |f (@)”

fe

Proof. As stated in proposition 4.3, a radical is the kernel of em-
pedding (4.3.1); therefore,

rad A = {weA : sup [f(z)| = 0},
Tt

so to prove theorem 4.9 it suffices to prove formula (4.9.2). The proof
will be based upon the following

4.10. LEMMA. The closure K, of unil sphere K, of spectral norm |l
(see definition 3.1) is a convex subset of A.

Proof. To prove the convexity of a closed set K, it is sufficient
to prove that from @,y K, it follows }(z+y)eK, or, what is the same,
to prove that |zl <1, |yl <1 imply |} (z+9)s <1. It may easily
be verified that the last implication is equivalent with the following:
llzlls < 1, |lylls <1 imply [|3(x+9)|ls <1, so we shall prove it. We have

@+ )l = o lim V@971 hml/Z( !

Now by the same arguments as in proof of (3.3.3), formula (3.3.11), we
can show that |z*y" ¥ < 1 for large n and k =1,2,...,n. It follows
that

b+ o)l < —hm]/ 2( )

hm]/ 2n+1) (2”) hm]/ (2”)
As a corollary we get the following lemma:
4.11. LEMMA. The functional

(4.11.1) loll* = lleefis’™

18 a homogeneous continuous submultiplicative pseudonorm in A.

Now we pass to the proof of theorem 4.9.
By proposition 4.3, formula (4.3.2), we have

sup|f(@)|” < |ll, or sup|f(@)] < ||
Jet Tl
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The set I = {med :|a|* = 0} is a closed ideal of A4, and every
functional £ is zero on I, so it is constant on the cosets of A™ = A/I,
and we may define f on A* by means of the formula f(X) = f(@), where
feM, reXed" Moreover f is continuous with respect to | X|* = inxf flao]*

= |@||* for any zeX, since [@|* is constant on cosets. It is also evident

that
s;lP I (X) = sgplf(m)f

for any X eA* and ¢ «X. But 4* equipped with the norm || |* is a normed

n,—_—
algebra, so sup|f(X)| = limV[X™|*, and we have
7

sup|f(a)] = lim V[T = lim Vinf[o" = int )" = Ja"
1 T Ze

which i8 equivalent with (4.9.2), q.e.d.

As a corollary we get another proof of theorem 3.8.

4.12. COoROLLARY. Any commutative p-normed division algebra is
trivial (i.e. it is either real or complex numbers field).

In fact, by (3.3.7), ||lzll; is a p-homogeneous norm there, so it is a
normed field with the norm |jz||* given by (4.11.1), and the conclusion
follows from the theory of Banach algebras.

§ 5. Analytic functions in p-normed algebras

In this section we shall apply theorem 4.9 to the construction of
analytic functions in a p-normed algebra.

5.1. DeEFINITION. The spectrum of an element z of a topological
algebra 4 is the subset of complex plane o(z) = {i: (x— Ae) is not in-
vertible in A4}.

Since o(x) with respect to 4 is the same as o(w) with respect to
maximal commutative subalgebra of A containing =, we shall limit our-
selves in this section to commutative case.

Let A be a commutative p-normed algebra. By proposition 4.4
we have

o(@) = {f(x) : fe M},

where M is the set of all multiplicative linear functionals (or maximal
ideals; cf. proposition 4.1) of 4, s0 o(z) is a compact subset of complex
plane. In the case where 4 is a commutative Banach algebra there is
known that if @(1) is a holomorphie function defined in an open set %
containing ¢(z), then there exists in 4 an element y such that

(5.1.1) f(y) = D(f(z)) for every feIN,
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For an abbreviation, we shall write also y = @(»), though y here
is not given uniquely, and relation (6.1.1) holds also if we replace ¥ by
y-+r, where 7 <rad A. We shall prove the same theorem in the case where A
is a commutative p-normed algebra. We shall give a step-by-step con-
struction of such a y, and the construction is based upon the following
lemmas.

5.2. LEMMA. Let @ (1) be a holomorphic function defined in an open
subset « of complex plane, and lei @ be an element of a commulative p-nor-
med algebra A such that

o(z) =« K(Ay,7) = %,
where K (A, 7) is a disc with center Ay and radius r. Then there is a yed
such that (5.1.1) holds.
Proof. It may easily be verified that o(z— A,¢) =« K(0,7). By
formula (4.9.2),
sup {|AP : Aeo(@—Ae)} = limVj(@— Ag0)"],

so for large n and suitable ¢, max|o(®)| < o< 7,

(22— Ase)"|| < ™.
But in K (A, 7)

o) = Y (= h,

n=y0

and r < (lim sup?@)“‘. It follows that the series 3 a,(x— A.e)" is abso-
lutely convergent in A. In fact,

D llaale— )l < ) Il li@— k)"l

3
< Swre < Y(E <o

The estimations are true for large » but it does not change the desired
convergence. Setting y = 3 a,(2—40¢)", we have

f@) =£( D) an(@—20)") = D an(f(@)—4)" = O(f(2))

for any feON; hence (6.1.1) holds, gq.e.d.

5.3. LemMA. If @ is a holomorphic function defined on a simply
connected open bounded subset U of complew plane, and if o(w) = U, then
there is a yeA such that (5.1.1) holds.

Proof. Let ¢ be a 1-1 conformal mapping of % onto K(0,1). Put
r = max{|p(o(2))|}. We have r< 1, so we put e =;(1—7), and define
U = ¢ '(K(0,1—¢k)) and T, =¢*(8(0,1—ek)), where S8(d,?)
={A:|A=2 =7}, k=1,2,...,8 have o(z) = %,. Now by the

Rozprawy Matematyczne XLVII B 2

w
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theorem of Runge we can choose such a polynomial p(A) that
|p(2)—@(A)| < & for Ae2;. If 4, K (0, 1—2¢), then the equation ¢(1) = 2,
has exactly one solution in %; moreover we have

min [ (3) — 2| > &
Ael™

(because |p()] =1—eonl) and |4l < 1—2¢). So, by the theorem of
Rouché, equation p(4) = A, has in %, exactly one solution. We thus have

P(‘T(m)) c K(0,1—3¢) c p(%),

and p is a 1-1 conformal mapping of %, onto p(%;). Now it may easily
be verified that
])(O'(w)) = ”(p(m))y
and so we have
o(p (@) = K(0,1—38¢e) < p(%),

and the function (i) = di(p—l(A)) is a holomorphic funection defined
on p(%,). Thus, by lemma 5.2, we can define an element y such that
f@) = v(flp(@) for any feM, but y(f(p(2) = v(p(f(@) = &(f(a),
and (5.1.1) holds, q.e.d.

5.4. LEMMA. If zeA, o(n) = %, where U 18 a stmply connected open
subset of complex plane, having complement with non-void interior, then
for any @ holomorphic on U there exists o yed such that (5.1.1) holds.

Proof. Let A, be an interior point of complement of %. The funection

1
Yp(d) = ¢(—}: ‘|‘}~o)

is a holomorphic function defined on the bounded, simply connected
open set ¥ = (% —2)"'. We have also o((x—A,¢)"") = ¥, and so by
lemma 5.3 there is a yeA that f(y) = y(f[(2— Ae)"']) for each feM.
But p(f[(z— 1p6)']) = w((f(co)-—lo)") = &(f(»)), and (5.1.1) holds, q.e.d.

5.5. LEMMA. The conclusion of lemma 5.4 i3 also true in the case where
% 18 an open, bounded and connected set, provided its complement consists
of finite number of components each of them having interior points.

Proof. Using the Cauchy integral formula we can write every holo-
morphic function @ defined on % in the form

‘p“) = (px(lH‘ —I—(D,,,(l),

where @;(4) is a holomorphic function defined on a simply connected
set %; being complement of a component of complement of %, % = (0 %;.
Thusz by lemma 5.4, we can define y; ¢4 such that (5.1.1) holds for z, y;
and @;, and the desired element is y = y,+ + 9., q.e.d.
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5.6. LEMMA. Lel o(x) = %, v U,, where %, 1 = 1,2, iz a conneoted,
bounded, open set, and Uy~ U, =B. Assume also o(z) ~ U # O
(i =1, 2). Then there ewists such a zeA that f(z) = 0 for any feM such
that f(z)e¥,, and f(z) =1 for any feM such that f(®) e¥,.

Prooi. Let ¢ and g be two distinet complex numbers which lie in
this component of the complement of # = %, u %, which contains
the boundary points of %, and %, (two possible situations are schemati-
cally given in Fig. 1).

Now we take two disjoint open sets P, and P, in such a way that
a, ¢S =%y, v P, v ¥, P,, 8§ iz connected, and a and f are not in
the same component of complementation of §. We now take any branch

@1 (4) of

1 1
‘°g(a—ﬁ - l—ﬁ)

defined on #, v P, v %,, put p,(1) = @,(1) for le%, and extend it
analytically onto P, and #,. We have

0 for e,

Bd)—elh) = [szm; for  Aed,’
where ¢ = —1, or 1 The functions ¢, and @, are holomorphic on the
connected open sets #, v P, v %, and %, v P, v %, containing o(2);
thus, by lemma 5.5, there are elements #, and @, such that f(z,) = ¢,{f(2)),
and f(z,) = ,(f(»)), feM. Tt is clear that the desired element z may
be given by z = (#,— ®,)/e2ni, q.e.d.

5.7. THEOREM. Let A be a commutative p-normed algebra. Let % be
an open subset of complem plane containing the spectrum o(w) of an we A,
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Then for any function @, holomorphic in % there exists an element yeAd
such that (5.1.1) holds. If A is semisimple, then such a y 18 unique.

Proof. Since o(2) is compact, it may be covered by a finite number
of dises K (4,r;) contained in %. Thus we can assume that % ig itgelf
a union of a finite number of dises, 80 ¥ = %, v v U, Where %;
is a connected bounded set having complement with a finite number
of components each of them having interior points (the last we may
obtain by changing a little radii of discs what is possible without removing
them out of %, or failing to cover o(z)), and %; ~ U =B, i # j, and
o(z) ~ %; # 9. Now by lemma 5.6 and easy induction we may construct
elements 6, ..., ¢,ed in such a way that

et ... Fe, =,
and
1 i.f f(m) € ol’/.,:,

T =le & )y,

We now put ; = (x— a;¢)é;+ a;6, Where a; is an arbitrary complex

number in %; ~ o(x). We have o(x;) < %;. By lemma 5.5 we can construct
an element

Y = O(@;)—P(a)(e—e), +=1,2,...,1,

and put ¥y = y,+  +¥,. Let feON; thus there is a k such that f(x)<%,.
We have

Fly:) = O(fl@))— B(a;) (1—F(es)),

so if i % & we have f(a;) = (f(#)— ) f(e))+ a; = &, and f(y;) = D(a;)—
—P(a;))=0; if ¢ =% then f(ap) =f(@)—o;+a;=f(z), and [f(¥)
= @(f(%)), so in any case f(y) = @ (f(«)). The statement that y is unique
if A is semisimple is obvious, so theorem is proved.

In the same way as theorem 4.5 we get as corollary the following
generalization of classical theorem of Levy on trigonometrical series.

5.8. THEOREM. Let x(t) be a complex function of real variable 0 <t < 2%
equal to its Fourier expansion

where ) |x,|” < oo for a fized p, 0 < p < 1. Then if @ is a holomorphic
function defined in a meighbourhood of the set {xz(t) 0 <t< 2=}, then

Do) = Dy,
where )'y,|” < oo.
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§ 6. Final remarks

As we have seen, many facts true for Banach algebras are true for
locally bounded complete algebras, though some proofs must be replaced
by new ones. As author was informed by S. Rolewicz there is also true
an analogue of theorem 5.7 in which instead of spectrum and analytic
function of one complex variable there is taken joint speetrum and
holomorphic function of several complex variables (the result is obtained
by the use of suitable integrals; cf. remark 4.8). By the use of similar
method as in the proof of theorem 4.9 it may be shown that a commuta-
tive p-normed algebra may be decomposed into a direct sum of ideals
A=1I @I, if and only if N is disconnected. In this case we have
M =M, v M,, where M;, i =1,2, is open and cloged in MW, and
there are two idempotents, e, and e, such that

) 1 for MM, () 0 for MM,
€ = [ =
' 0 for MM, 1 for MM,

and I, = ¢ 4, I, = 6,4 (for the detailed proof, see [31]).

In a similar way as in Banach algebra theory it may be shown that
in any (non-trivial) p-normed algebra there are topological divisors of
zero. It may be shown also that for any two commutative semisimple
p-normed algebras algebraic isomorphism implies the topological one.
Thus there should exist a characterization of a commutative semisimple
algebra in order to be isomorphic with a p-normed algebra. Let 4 be a
commutative complex algebra with unit, I the set of its maximal ideals.
It is clear that the necessary condition in order 4 be p-normable in a
semisimple way is that any element of 9N should be of codimension one,
so elements of YN may be identified, as in p-normed case, with multi-
plicative linear functionals. It must be, moreover,

lzlls = max|f(x)|" < oo
fellt

for each zeA (here p is a number satisfying 0 < p < 1), and it must be
actually a norm, not a semi-norm.

6.1. DeFINmTION. A submultiplicative p-homogeneous norm || |
defined on A is called semisimple if the completion [4, | [|] of A in the
norm || || is semisimple. Let S,(4) denote the class of all semisimple
p-homogeneous norms defined on 4. If A4 satisfies necessary conditions
mentioned above, 8,(4) is non-void since || [l;eS,(4).

6.2. DerFiNviTION. An element | |, e8,(4) is called to be non-greater
than | |,, in symbols | |; = | [,, if | |, is continuous with respect to | [,
or, what is the same, if there is a constant C such that |z|, < Clz|, for
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every xeA. Two norms | |, and | |, are equivalent if | |[; < | |, and
| |+ & | |s. The set of ~ equivalence classes S’p(A) obtained from §,(4)
is a partially ordered set which order 3.

If A itself is a p-normed algebra with norm || ||, then the ~ clags

of || || is & maximal element of §,(A4). In fact, let | |eS,(4), and let y
be a natural homomorphism of 4 into [4,| |]. We shall show that the
graph of p is closed. Let z, — x, in A4, and y(x,) =¥, in [4,| |]. For
any feMM([4,] |]), the functional h(x)=f(p(x)) belongs to M(4);
hence it is continuous in || [[. It follows that

f(‘/’(wo)) = h(®o) = hmh’(mn) = ]jnlf("l’(wn)) = f(?/o):
and so y, = y(x,) since [4, | |] is semisimple. It follows that y is con-
tinuous which means that [lim|,| =0 implies lim|z,| = 0, thus
| | ]| || and class of || || is & maximal element of §,(4). So we pose
the following
6.3. CoNJEOTURE. Let A be a commutative complex algebra with unit.
Then A is isomorphic with a p-normed algebra if and only if

(6.31)  Bvery maximal ideal of A has codimension one, and |||,
= max|f(z)| i¢ a finite norm in A.

<N

(6.3.2)  The family ;§',,(A) has a mazimal element || |.
We conjecture also that under these conditions A is complete in mawi-
N —
mal norm || || and |z|s = Lim V|z"].



CHAPTLER II

F.-ALGEBRAS AND TOPOLOGICAL ALGEBRAS

We give now some general facts on F-algebras, and. topological
algebras. We shall be concerned here with basic problems connected
with continuity of multiplication and of inversion in F-algebras, and
with topological division algebras.

§ 7. I'-algebras

7.1. DEFINITION. An F'-space is a completely metrizable topological
linear space (cf. [4], [6]). If X is an F-space, then its complete metric
may be given by the means of an F-norm, i.e. functional ||z| satisfying:

(7.1.1) 2] = 0 and |z| = 0 if and only if 2 = 0.
(7.1.2) 12+ gl < llell + iyl
(7.1.3) flAz|| = |j2|| for |A| =1.

(7.1.4) lim |2, = 0 implies lim|4,2| = 0 for each zeX.

(7.1.5) lim|jz,|| = 0 implies lim ||Az,|| = 0 for any scalar 1.

(7.1.6)  The distance of two points z, yeX is given by [x—y|, and X
is complete in this metric.

Of course, the topology in X may be also given by other (translation
invariant, or not) metric functions. However we shall always consider
metric funetions in which X is a complete space.

7.2. THEOREM (Arens [2]). Let A be an F-algebra; then the muliiplica-
tion in A 48 joinily conitnuous.

Proof. Let |z be an F-norm of A4, and let K(zy,r) = {wed:
leo—z|| <7}. Put U, = K(0,1/n); thus (U,) forms a basis of neigh-
bourhoods of zero in A. Let U be any fixed neighbourhood of zere in 4
and let 4, = {red :2U, = U}. By separate continuity of multiplication
in A we have 4 = (J 4,,. Since each 4, is closed, there is an n, such
that interior of 4., is non-void, and so there is an &, and 7, such that
K(zy, r,) Ano. Let 2¢K (0, 7,); we have ¢ = 2'— x,, where &'« K (2,, 1),
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30 20U, = @' Uy, —wyUpy = U+ TU. Now let ¥V be an a.1b1t1a.1y neigh-
bourhood of zero in A. We can pick out a U in such a way that U4 U < V;
s0 K(0,7y) Uy, = ¥, and [K(0, min(re, 1/n,))]* = ¥V which means that
multiplication 1n A is jointly continuous, q.e.d.

We now prove a theorem on the possibility of completion of a metrie
algebra.

7.3. THEOREM. Let 4 be a meiric algebra; then A may be topologically
embedded in an F-algebra (as dense subalgebra) if and only if the mulii-
plication in A is jointly continuous.

Proof. If A is subalgebra of an F-algebra, then by theorem 7.2
multiplication in A4 is jointly continuous (it is obvious that any sub-
algebra of an algebra with jointly continuous multiplication has the
game property). Suppose now that multiplication in 4 is jointly con-
tinuous, i.e. for any neighbourhood of zero U there is another neighbour-
hood V such that V2 < U. Consider a fixed metric in 4. We shall show
that if (@,), (v,) are Cauchy sequences in 4, then so is (#,%,). Therefore,
let U be any neighbourhood of zero in A; it is to be shown that there
exists such an N, that for k,1 > N we have z,y,— ;9 U.

We have

(1.8.1)  Bpyp— oY1 = BpYp— Ve + TrYi— Y1 = Tp(Yp— W)+ (T —2) Y,
= (@, — o) (Y — Y1) + @0 (¥ — Y1) + (B — Y1) (V12— ¥o) + (@ — Y1) Yo -

g, Yo are elements of A which shall be defined later on. We find such
a neighbourhood V of zero that V+V+V+V < U, and such a W
that W2 < V Since (a,), (¥,) are Cauchy sequences, there exist z, ¥,
and K such that for k¥ > K we have z,—a,¢W and y,—y,¢W; there
is also such an M that for k,1> M we have z,—a;e W and y,— €W
Setting N = max(K, M), we have, in view of (7.3.1), @,yr— @y U
for k,1> N, 80 (m¥,) is also a Cauchy sequence. If 4 is the completion
of A, then for #,ye4d we have z = lims,, y = limy,, #,, Y4, and
-y we define as Ijmm,,y,,,, this is obviously a continuous associative
multiplication in 4, and 4 is an F-algebra, so the natural mapping of
A into A4 is the desired embedding, q.e.d.

We now pass to the proof of a theorem on continuity of inverse
in F-algebras.

7. 4 TrEEOREM (Banach [5]). Let A be an F-algebra; then the inversion
T —> a7 18 continuous on the set V of all invertible elements of A if and
only if V is a Gyset.

Proof. The condition is necessary. In fact, the set H on which the
oscillation of &~ is zero is a G,-set. We ha.ve V <« H. On the other hand,
if #eH, then » = lima,, z,¢V, and ;' is a convergent sequence in A.
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If y = limay", then, by theorem 7.2, ¢ = lima, #,;" = oy, 80 z¢V and
V = H, 50 V is a Gy-set. Now let V be a G;-set. Then there exists a metric
o on V, equivalent on ¥V to the metric given on 4 by its F-norm || |
and such that V is complete in the mefric o; thus V is a complete space
in p, it is a group with multiplication, and multiplication »-y is jointly
continuous in (V, g); thus our conclusion follows from the following

7.5. LEMMA (Zelazko [32]). Let @ be a group, and at the same time
a complete metric space with metric g. Designate group operation as multi-
plication ©+y, and assume that the multiplication is separately continuous,
i.e. limux, = z imply Iima,y = a2y and limyz, = yx. Then the inversion
in G is also continuous, i.e. lima;' = o',

Proof. It is clearly sufficient to prove that if x, is any sequence
of elements of the group @, which tends to the unit e, then there exists

a subsequence %, such that #,'-»e. The subsequence Z, will be defined

by an induction. Suppose thmt elements #, ..., #, are chosen from the
sequence (z,) in such a way that

1
(7.5.1) 0 (Pry Pi1) < QT
1
(7.5.2) 0 (Qaky Cs 1) < S
for k=1,2,...,n—1, 8 =1,2,...,n,n+1, where

——1

Piy for k>s,

Dy = Byy eevy i , =
Dr 13 y Ty Qs P for  k<s.

The possibility of choosing of suitable Z,,, for which also hold re-
lations (7.5.1) and (7.5.2) follows from the fact that there is only finite
number of these relamons to be satisfied and that z, - e. It follows from
(7.5.1) and (7.5.2) that the limits p =limp,, and g, = limg,,, exist and that

n n
1 1
o(p, Pr) QEE’ 0(gas Qs,%) g?&
We also have

o(p, qs) < o(p, ‘Iss)'l' (g, Qa) = o(P, Ps—1)+ 0(qss &.6)

1
28—-1 + 28—27

—_1

so it follows that p = ]unqﬂ On the other hand, it is Z;' = p~'gs, 50
there exists the limit lim %' =p~'limg, = ¢, g.e.d.
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7.6. CorROLLARY. If A is a division algebra of type F, then the
inversion 18 continuous in A.

Or, giving the following

7.7. DEFINITION. A @Q-algebra is a topological algebra in which the
set of invertible eléments is open,

we have also

7.8. COROLLARY. In any Q-algebra of type F' the inversion s continuous
on the set of all invertible elements.

The following question is open:

7.9. PrOBLEM. Is every division algebra of type F' isomorphic and
homeomorphic either with real or complex field, or with the division
algebra of real quaternions?

Without the assumption of completeness the answer is in negative,
even in the case where the inverse is continuous. The counter-example
is the algebra of all rational functions of one real variable with metrizable
topology given by asymptotic convergence. However, there are some in-
formations about topological division algebras, which we give in the
next section.

§ 8. Topological division algebras

In this section we shall consider topological algebras for which the
multiplication is jointly continuous, i.e. for any neighbourhood of zero V
there exists another such a neighbourhood satisfying W2 c V

8.1. DeririoN. A topological linear space X is called fo possess
short lines if for any neighbourhood of zero V there exists an @ # 0
such that Aze¢V for every scalar A.

8.2, DerviTION. A topological algebra is called {0 possess small
ideals if for every neighbourhood V7 of zero there exists a non-zero ideal
contained in V.

8.3. PrROPOSITION. A topological algebra possesses small ideals if and
only if it possesses short lines as a space.

Proof. If A4 possesses small ideals, then it obviously possesses
short lines. Suppose that A possesses short lines, and let U be an arbi-
trary neighbourhood of zero in 4. Let V2 < U and AreV for each A, where
r # 0. We shall show that the ideal I = x4 is contained in U. In fact,

let yed. We can choose such a 2 # 0 that lyeV DBut i— eV, and so0

1
ry = 7—17-1;1/([” < U,

q.e.d.
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8.4. COROLLARY. If A 18 a division algebra, then A as a space Ppossesses
no short lines.

8.5. PROPOSITION. Let A be a topological division algebra over complexes,
and let the imversion be continuous on the set of non-zero elements of A.
If there is in A at least one non-zero continuous linear funotional, then A
is topologically isomorphic with complex numbers field.

Proof. Let f be a continuous (complex) linear functional in A.
The set {red :f(x) # 0} is open in A, so it is sufficient to show
any element of this set i of the form « = ie, A— a complex scalar.
Suppose then that there is a ¥ ¢4, not of the form Ae, such that f(y) # 0.
Consider the function ¢(4) = f[(y~'—2%e)—']; it is a complex function
defined on the whole complex plane. Moreover, there exists

A A-o'—‘ A’O : -1 —ly—t -
DT )= 700) _ fl1im (41 (A4 2) ) (4" — Aoe)

A=0 A A=0

_f(( _"LO );

go that @(1) is an entire function. Moreover, it is

lim () = hml“f(hm(% —e)_l) = 0-f(—¢) = 0;

|A]—c0 |A] e=00

this follows ¢(4) == 0, which is impossible since ¢(0) = f(y) = 0, gq.e.d.

8.6. Remark. By use of the technique mentioned in remark 4.7,
proposition 8.5 may be proved under assumption that A is a division
algebra over real numbers. In this case the conclusion would be that A
is" isomorphic with either one of three standard trivial division algebras.

8.7. CorOLLARY. If A is a non-trivial I'-division algebra, then convex
envelope of any meighbourhood of zero in A is the whole of A.

Now we introduce a new concept of generalized topological divisors
of zero.

8.8. DErFINITION. Two subsets X and Y of a topological algebra A
are called generalized topological divisors of zero in A, if 04X < ¥, but
0eX Y (X denotes the closure of X).

If one of the sets X, ¥ consists of single point, it is an ordinary
topological divisor of zero; if both consist of single points, there are
divisors of zero. We shall prove the following theorem:

8.9. THEOREM. If A is a topological division algebra over real mumbers
field, then either A possesses gemeralized topological divisors of zero, or A
18 18omorphic and homeomorphio either with real numbers field, or complex
numbers field or with the division algebra of real quaternions.
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Proof. Let W be a neighbourhood of zero in A such that e¢W,
and let ¥V be another such a neighbourhood satisfying V v V2c W
We put U = (4~ V)"' v {0}, where A~V denotes the complementa-
tion of V in A. We claim that Oeint U. If not, then 0ed=- U, s0 4= T
intersects with V and there is an z¢V ~ (4= U). This follows » # 0,
and z¢(A=V)?!, and s0 z7'¢(A=V) and #'«V DBut we have also
reV, s0 e =32 V> c W, and we get a contradiction. Therefore U
is a neighbourhood of zero in A. If U was a bounded set in A4, then 4
would be a locally bounded division algebra, and so, by Remark 4.7,
it would be one of either three standard division algebras. To prove owr
theorem it remains to show that if (4= V)~' is an unbounded set, then
there are generalized topological divisors of zero in 4. But in this case
there exists a neighbourhood @ of zero in A4 such that for every scalar
A # 0 there exists an @, e(4 = V)™' such that Az,¢Q. We have x;'e(4 =~ V),
Mz (A =Q). Obviously 0¢(A=V) v (4+Q), but le = Amaz;'e(4d~7V)
(4 =Q) for every 1 #0, 50 0e(4d=V)(4=Q), q.e.d.

Theorem 8.9 is obtained under very general assumptions, but pro-
bably there is true also a more general fact (which may be considered
as a generalization of the fact that every Banach algebra either possesses
topological divisors of zero, or is one of three division algebras), and
we pose the following

8.10. ConsmEcTURE. Let A be a topological algebra with jointly con-
tinuous multiplication. Lhen either A has generalized topological divisors of
zero, or A is homeomorphically isomorphic either with real or complex
numbers field, or with the division algebra of real quaternions.




CHAPTER IIT

Bs-ALGEBRAS

§ 9. Basic facts

Now we pass to another geucralization of Banach algebras, namely
to locally convex, completely metrizable topological algebras.

9.1. DEFINITION. A B;-space is a locally convex F-space (cf. defi-
nition 7.1). The topology in a Bg-space X may be given by means of a
countable family (|z];) of homogeneous pseudonorms. The sequence (z,)
of elements of X tends to x, if and only if

lim|@,—@yl; =0 for 4=1,2,...;
n

this convergence is equivalenl with convergence given by distance

_ Nl eyl
Q(w’y) ;:TI 2{ 1_|_ |m'—'?f|i’

which gives an F-norm ||| = g(«, 0). Replacing the system (| |;) by
llell, = max(|2]y,y ..., |#],) We get an equivalent system (i.e. giving the
same topology) satisfying

(9.1.1) lz], < |2l, < ...y

80 we shall assume that considered pseudonorms satisfy this relation,
unless otherwise stated. A pseudonorm |jz|| is continuous in X if and
only if there is a constant C and an integer n such that ||z < C|a, for
every reX. Any two systems of pseudonorms satisfying (9.1.1) give
the same topology if and only if any pseudonorm of one system is con-
tinuous with respect to the other one. In particular any subsequence
of system satisfying (9.1.1) gives the same topology as the system itself
(for properties of B,-spaces see e.g. [13] and [14]).

9.2, TnuonEM. Let A be a By-algebra; then the system of pseudonorms
(9.1.1), giving the topology of A, may be chosen in such a way that

(9.2.1) 2yl < (@l [Ylesn, 1 =1,2,
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Proof. By theorem 7.2 the multiplication in A4 is jointly continuous.
It follows that for every continuous pseudonorm [z there are a con-
stant €' and an integer n, such that [yl < Cl2ly,|yl,,, otherwise there
would exist sequences (z,), (¥,) of elements of A such that |jx,y,| >
N2 |y|n |Ynln, and it would be lim¢, = lim#, = 0, where

1 a, 1 y,

b= =
" w0 Wl

while ||£,9.]| =1, what is impossible. Having this, we put [jz|l, = |2,
we pick such an i >1 that |yl < O|zl|yls, and we put |lzll, = VO |z|;
then for ||z), we get a j >4 such that |lvy|l, < O|2|;|yl; and so on. We
can always increase constants C to make the new system satisfying
(9.1.1). It clearly satisfies (9.1.2) and is equivalent with the old one, q.e.d,

9.3. Remark. We do not know whether it is possible to have an
equivalent system of pseudonorms satisfying (9.1.1), (9.2.1), and such
that |¢j; = 1 for 1 =1, 2,... We can do it in the case when in A there
exists at least one closed maximal ideal and 4 is over real or complex
scalars. To prove this we formulate

9.4. THEOREM. Any Bgdivision algebra (over real numbers) is iso-
morphic and homeomorphic with one of three standard division algebras.

This theorem is an immediate consequence of remark 8.6.

Suppose now that M is a closed maximal ideal in 4, so its codimension
is finite (1, 2 or 4 in case of real scalars, 1 in case of complex scalars),
and so A is a direct sum, A = M @ D, where D is a division algebra
with modulus |[én| = |£||n|, for &, neD, and |¢| =1. We may assume
also that |&z|; = |&||z|; = |z€|; for £eD, zecd (we may replace, if ne-
cessary, |z|; by suep |Exnl;). Having decomposition # = m-+ &, where

[71=]¢|=1
weA, meM, £cD we put now |[wl = |ml+[&. So if @ = mit &,
t=1,2, we have |[#,&,]; = [[myme+ E;my+my Eo+- &1 &all; = MMyt &1y
+my Eglet [ Exl16a] < [MmyMale+ [E] Imals+ ol Imals 4 1€l 162 < [Myligr [Molisa
F &l Imaligr+1€al [Malis + [ €1] 1] = I@lleg [I@elliyy. Obviously, |ell; =1,
and the system |jz|; is equivalent with the old one. Unfortunately, there
are By-algebras without closed maximal ideals, so the question is still open.

9.5. Remark. Theorem 9.4 is false without assumption of comple-
teness (see example 12.3).

9.6. Remark. In many cases one may pick out a system (9.1.1)
in such a way that

(9.6.1) l2yls < [lslyls

holds. The next two sections will be devoted to this case.



§ 10. Multiplicatively convex B,-algebras 31

§ 10. Multiplicatively convex B,-algebras (')

10.1. DEFINITION. A Bj-algebra A is called multiplicatively-convex
or m-oonvex, if there exists an equivalent system of pseudonorms (9.1.1)
satisfying (9.6.1) (in [15] Michael calls these algebras the F-algebras).

10.2. DEFINITION. A subset X of a topological algebra is called
idempotent if X* = X. A topological algebra is called locally idempotent
if there is a basis of neighbourhoods of zero consisting of idempotent
gets.

10.3. LEMMA. Convex envelope of an idempotent set is again an
idempotent set.

Proof. Let U be an idempotent, and V = conv /. It is to be shown
that V2 <V Tet z,yeV, 80

M N
Tr = Zauwn; Yy = Zﬂn?/-ny

n=1 N==1

and Y a, = D) f, =1, where 0 < a;, f; <1. We have
M N

ry = 2 Zakﬁnmky'n.-

k=1 =]

But @y,el, Darf, =1, and 0 < f, <1, 50 ayeV, gse.d.
kn

The following proposition gives a characterization of multiplicatively
convex B,-algebras.

10.4. PROPOSITION. A Bg-algebra is m-conver if and only if it is locally
1dempotent.

Proof. Let K;(r) = {xed : |x|; < r}. If A is multiplicatively convex
then {K;(r)}, 0<r<1l, i=1,2,..., forms a basis of idempotent
neighbourhoods of 4. If (U;) is a basis of A consisting of idempotent

sets, then setting V; = (U AU we get a basis consisting of balanced idem-
1<l
potent set, and if we put W; = convV; then we get, by lemma 10.3 and

local convexity of A, a basis consisting of balanced convex idempotent
sets. So if ||jz|; is a psendonorm such that {z:|z|; <1} = F — closure
of V, then the system (|lz|;) gives the same topology as basis (U;), and
satisfies (9.6.1). To have the system satisfying moreover (9.1.1) we may
put |zl = max {llzlli}, q.e.d.

iele

10.5. ExamrLE. Any closed subalgebra of an enumerable cartesian
product of Banach algebras, with coordinatewise multiplication, is an
m-convex B,-algebra. This is in a sense universal example as we shall
see in the following

(!} Presented here results are adopted from [15].
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10.6. PROPOSITION. Any m-comvex Bg-algebra s a closed subalgebra
of cartesian product of Banach algebras.

Proof. Let N; = {r:|z]; =0}, where the system (|z|;) satisfies
(9.6.1); it is a closed ideal in 4. Let 4; = A[N;, and let 4; be completion
of 4; in the norm |z|;, 50 4; is & Banach algebra. If z;(z) is the natural
mapping of 4 into 4; we get a natural isomorphism of A into cartesian

product [] 4;, given by @ —+ (m(x)}). It is a topological isomorphism,
=1

since topology of A is identical with cartesian product topology of its
image. The image is closed, since A is complete, g.e.d.

10.7. ExampLES. The algebras C(— oo, o0) of all complex valued
continuous funotions of real variable A, —oco < A< oo, and E of all
entire functions of one complex variable A, with pointwise multiplica-

tion and psendonorms |x|; = max|z(A)| are m-convex Bj-algebras. For
A<t _

0(—o0,00), A;=C[—14,1]; for B, A; is Banach algebra of all

functions continuous on the disc |A| <4, and holomorphic in its

interior.

10.8. TurmorEM. A DBg-algebra A is m-convexr if and only if there
exists a system of pseudonorms giving its topology such that the multipli-
cation s Separately continuous with respect to each pseudonorm of this
system, i.e. [Yali— O tmplies |w,Ynl; 2 0 for i=1,2,..., zed.

Proof. Suppose that V; = {wed : ®K;(le|;) = K;(|el;)}, where K;(r)
= {#: |#|; < r}. Since for any zed there is a 1,; such that |zy|; < A.:|yl;,
it follows that V,; are symmetric and absorbing closed sets. Each V; is
also convex and idemypotent, so it is a neighbourhood of zero. Since
V, < K;(le];), it follows that the system of pseudonorms given by sets V;
is equivalent with (|z|;) and satisfy (9.6.1); thus 4 is multiplicatively
convex, q.e.d.

10.9. Remark. By the above theorem one cannot expect any
mixed situation of type |zy|; < |@];4)|y];; this condition would imply
existence of an equivalent system satisfying (9.6.1).

We recall that if X, is a sequence of topological linear spaces, and
7y, ¢ < j, are linear mappings =; : X; — X; such that m; is an identity
mapping and mymy = 7y for ¢ < j < k, then the inverse, or projective
limit of sequence X, with mappings =;; is a subspace of Cartesian product
(= <]

[1 X given by X = {z = (x,)¢[] X, : my(x;) = @}. If X, are Banach

Nl

spaces, then inverse limit X is a B,-space (i.e. it is complete). Now let 4
be an m-convex Bg-algebra, 4; — B-algebras as in proposition 10.6,
and 7 (z) a natural mapping of 4 into 4; (cf. 10.6). Define m;;: A; — A;
by 7y (ms(4)) = 7 (), where A; = A [N; equipped with norm | |; (cf. 10.6).
Since m;; are continnous algebra homomorphisms, they may be extended
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by continuity to mappings m;: A, — 4;. With this notation we shall
prove the following

10.10. TEEOREM. If A 148 an m-convex Bg-algebra, then A is
homeomorphically isomorphic with projective limit of algebras A; with
Mmappings my.

Proof. Let A be a projective limit of (4;) with ;. This is a closed
gubalgebra of ”A and clearly A interpreted as subalgebra of [14; is
contained in A (cf. 10.6), so it is sufficient to show that 4 is dense in A,
since A is also closed. But it follows immediately from the fact tha,t
m(A) = Ay, and A, is dense in 4; for ¢ =1, 2, ..., q.e.d.

10.11. COROLLARY. If for an element (a;)e[]A, it is my(x)) = a,
then there exist an xeA such that m(x) = w;.

From this corollary we deduce the following

10.12. THEOREM. If wed, and mi(z) is invertible in A, then z is
invertible in A.

Proof. If [m(#)]'ed; for i=1,2,..., then m(e) = my(me))
= "ii([“i(m)]_lﬂl ) = Tij ([”f(w)] )7‘17 (7‘1("‘”) = 71:';1([751(03)] ) ny(z), a'nd-
gince m;(¢) i3 unit in A;, it follows that my([n;(#)]7") = [m{2)]~ .
follows, by corollary 10.11, that there is a yeA that =;(y) = [m(m)]".
We have m;(xy) = n;(w) 7, (y) = mi(e), 80 2y = ¢ and y = a~*, q.e.d.

Let M denote the set of all non-identically zero continuous multi-
plicative linear functionals of A. We have the following

10.13. TuEorREM (Wiener property of m-convex B,-algebras). Let A
be a commutative m-convex Bg-algebra. Then weA is invertible in A of and
ondy if f(z) # 0 for each feM.

Proof. If » is invertible, then clearly f(z) # 0 for each fOR. If &
is not invertible, then by theorem 10.12 there is an %, such that =; (%)
18 not invertible in 44—«50- But from the same property of Banach algebras
it follows that there is @& multiplicative hnear functional F defined on
4;, such that F(m; (%)) = 0. Setting f(x F(m,(0), we have feIN
and f(zZ) =0, q.e.d.

In the sequel of this section we shall consider only commutative
algebras.

10.14. ProrosrtioN. If A is a commulative m-convex B,-algebra,
then the intersection of oll maximal ideals coincides with the intersection
of all closed maximal ideals.

Proof. It is to be shown that if e ij M, then @ belongs to the

intersection of all maximal ideals. We have f(e+axy) = 1 for each f €M,
yeA, 80, by theorem 10.14, (¢+2y) 'eA for any yeA, but this means
that » is an intersection of all maximal ideals of 4, q.e.d.

Rozprawy Matematyezne XLVII !
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Usually in m-convex By-algebras there are maximal ideals which
are non-closed (and consequently dense in 4).

10.15. BExampreE. Let A = C(— o0, 00), a8 in 10.7, and put
I ={wed :x(t) = 0fort>T,}.Iis obviously a dense ideal in 4, so every
maximal ideal containing I is also dense.

For any maximal ideal in a complex B;-algebra it is true that either
its codimension is one, or infinite (Frobenius theorem), and by theorem
9.4 any maximal ideal of infinite codimension must be dense. It is still
open problem whether every maximal ideal of codimension one is
always cloged, equivalent to the question, whether every multiplicative
and linear functional is continuous.

10.16. Remark. Theorem 9.4 may be extended also on topological
algebras which are dense in m-convex Bj-algebras. In fact, any such
a division algebra equipped with any | |; may be considered as a normed
division algebra. In non-m-convex case it remains not to be true
(example 12.3).

Generally speaking the set V = {wed:2 'eA} is not open in an
m-convex Bg-algebra, e.g. in C(—oo, co) there is a sequence non-in-
vertible functions tending to the unit. However, it is always a G;-set
a8 it follows from theorem 7.4 and from the following

10.17. ProroSITION. In an m-convex DBy-algebra the operation of
laking inverse x — ™' is continuous.

Proof. Let V be the set of all invertible elements of A, x,, 2,¢V,
and lime, = 2,. It follows that limua;(z,) = m;(2,) for each 4, and so

n

limm; (') = m;(27') which means that limz;' = 27!, qg.e.d.
n

§ 11. Spectra and power series
in commutative m-convex B;-algebras (’)

In this section we assume A to be a commutative, complex, m-con-
vex Bj-algebra.

11.1. DerFIvITION. Let weA. The spectrum o, (x) of 2 is the subset
of complex plane consisting of all ’s such that z— Ae is not invertiblein 4.

11.2. PRrROPOSITION. Put
o (z) = {f(®) :f‘m}y

where M s the set of all continuous multiplicative linear functionals of A, and
oy (2) = L_Jl O'Z,;(”i(a’));
then o4(x) = o,(x) = a,(x).

(') Part of presented here results is adopted from [15], cf. Introduection.
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Proof. Clearly M = U M;, where M, is the set of all multiplicative
1

linear functionals continuous with respect to |z|;. M; may be identified
with maximal ideal space of 4;. Bince oy (m;(x)) = {f(x):f< M), it
follows that ¢, (2) = 04(®). If 1e0,(x), then there is an f<IN with fle) =2,
s0 f(x—2e¢) = 0, x—Je is not invertible in 4, and Aeo,(z). If Ada,(2),
then f(z—2e) # 0 for any feIM, and so, by theorem 10.13, z— e is in-
vertible in A, and A¢o4(®). Thus o, (x) = 0,(x), q.e.d.

11.3. The spectral radius o,(z) is defined as sup{|A| : Leo4(2)}.
We have the following

11.4. THEOREM. Let

", ——
(11.4.1) 7, (x) = suplimsup l/|as“], where sup designates supremum over
[ [l
all continuous pseudonorms of A;

N —_—
(11.4.2) 7y(2) = sip]imsup l/jf(m”)[, where A designates the conjugate
Jed®

space of space A;
(11.4.3)  7y(®) = sup|f(w)|;
ft

(11.4.4) 7y(x) = inf{R: (w— Ae)™" emists for each A, |A| > R};
]

(11.4.5)  rs(w) = inf{R : there exists a power series with complex coeffi-
cients D' a, A", having radius of convergence R, suoh that Zanm“
converges in A};

(11.4.6) 74(w) = inf{R: for each power series with complex coefficients
D an A", having radius of convergence R, > a,a™ converges in A};

then () = 15(2) = 13(®) = 74(2) = 15(x) = 74(2) = 04 ().

Proof. Clearly, r,(2) = 7.(2) = 75 () = o4{(2) = 7,(z). At first we
shall prove r,(z) = 7,(z). Let R >7r,(z); then m;[(z— Ae)”'] exiats in
each A, for each A with |i| > R, or there exists =;[(£z— ¢)~'] for |£| <1/R.
It follows that in A; the series ) £"z;(2)" is convergent and consequently
h'mT;/IE”'m”].i< 1, or lim le/m< R. If |#| is any continuous pseudonorm
in A4, then there is an ¢ and a constant C such that |z| < C|z|; for each
zed. It follows that

" ,—— n,—
limsup V2" < lim VC|z"; < R,
and so 7,(x) < R. Since it holds for every R > r,(x), it follows that
(@) =7y (x), and so 7, () =ry(®) = r3(2) = 7,(2) = e4(2). Clearly
75(®) < re(2). If R >ry(x), then there is a sequence of integers k, such
that ' (x/R)*» is convergent in 4. So 3 [f(z/n)]" is convergent for any

feM, and |f(s/R)| < 1, or |f(z)| < B. This follows that r4(w) < R, and
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rs() > r4(2). It remaing to be shown that i4(x) < o(z) = r1(@). So let
R >, (). We have for any continuous pseudonorm |z|

. ’1/ ( ® )" (@)
limsup z

R
[= =]
so the series ) (z/R)" is convergent in A. It follows that for any power
n=1
series Y'a, A" with radius of convergence > R, the series }a,a" is con-

vergent in A, 8o r4(z) < R. It follows that »s(w) <7, (2) which proves
the theorem, q.e.d.

11.5. Definition. The radical of A, rad A, is defined as the inter-
gection of all maximal ideals of A. So, by proposition 10.14, we have
the following

11.6. CoroLLARY. If A is a commutative m-convex By-algebra, then
its radical is characterized by

radd = {w:o4(0) =0} ={w:7(2) =0}, +=1,2,...,6.

An algebra is called semisimple if its radical consists only of zero.
Obviously A is semisimple if every A; is semisimple. The converse state-
ment, however, remains not to be true as is shown by the following

11.7. ExampLE (Rolewicz [23]). It shall be given a construction
of a semisimple, commutative m-convex B, algebra, such that for any
system of submultiplicative pseudo-pseudonorms giving its topology
there exists a non-semisimple 4;. Let 4, be a semisimple Banach algebra
with norm |jz[|, and let |jz||, be a submultiplicative continuous norm
in 4, such that the completion [4,, ||#|,] of 4, in [z], is not semisimple,
and rad[4,, {@l,] ~ 4, # @. Such algebras exist, e.g. 4, = 1, with

o0 oo

1
loll = DM1&l el = (&
0

0

<

<1,

and with convolution multiplication. Define now A as an algebra of
sequences & = (L,)p—q, Lred,, such that

(IL.7.1) el = sup{liwll, loall, - - l2illy [@isallo, 126 4allo. .} < oo

This is obviously an m-convex B,-algebra with pseudonorms (11.7.1)
and with coordinatewise multiplication. Moreover, A is semisimple.
Let |lz]; be any inecreasing system of submultiplicative pseudonorms,
equivalent with system (11.7.1). We shall show that, for large 4, A; with
respect to the new system are not semisimple. In fact, there are constants
Oy, 0,, integers 4 and m such that

2}y < Oyl < Ol@ln, weA.
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Since ||, i8 a norm, it follows that 4; is a completion of 4 with respect;
to |lz;. By our assumptions there is in 4, an element x, such that

lnnl/llivu | =0 (if 4, =1, we may take as z, any +# 0 element of the form
0, &, &, ...)). Put T = (0,...0, 2, 2,...); it is an element of 4. We
have |Z|, = [[%lly, S0 if Wwe treat T as an element of 4; we have

o < Qaan _C
3" < &2 18" = 5 20,
1

0,

so imVj@"; = 0, & # 0, thus 4, is not semisimple, Suppose now that
[||]]]; i8 an aabltra,ry system of submultiplicative pseudonorms in A4,
equivalent to (11.7.1). We shall show that in this case there also exists
an integer ¢ such that A; is not semisimple. Put

[[]ln, = max (]||2]];)-
i<n

Suppose that all 4; are semisimple- then

k<i kgl

§0 ]im’i/Haa"“i = 0 implies |[|@|||z = 0 for k& < ¢, and |j#|; = 0, which would
mean that A; for the increasing family “m”i are all selmsunple, which,
a8 was shown Dbefore, is impossible.

In a similar way as for Banach algebras one may construct analytic
functions in m-convex B, -algebras.

11.8. THEOREM. If zeA, o4(x) is contained with s closure in an
open subset U of complex plane, and if @ is holomorphic in U, then therc
exists a yeA such that for every feM it is

(11.8.1) 7)) = ?(f(2).
Proof. By proposition 12.1, o4(z) = U og,(m(@), so oz, (m(x))
i
c U. If Iy is any rectifiable Jordan curve contained in U, and sur-

rounding oz, (7;(x)), then

yi= == [ B(E) (fe— (@) dE

27; Tz

is a well-defined element of 4;, independent of I';. Morcover

sl = s [ 081t =)

_JLI

= zi [ @(&)(de—mi(a) " aé =y,

:n:il"j'
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so by corollary 10.11 there exists a yed such that m(y) =y;. It is
evident that y satisfies (11.8.1), g.e.d.

11.9. Remark. Usually o,(z) fails to be compact, it may be even
the whole complex plane. Anyway, if @ is an entire function, there is
always the well-defined element y = @(x) for all wed.Ibis y = D a, 2",
where @(4) = Zan).”. Let us observe that, in certain cases, from the
fact that & is defined in an open subset of an algebra it follows that &
i3 an entire function. E.g. if @ is a function defined in an open subset
of ¢(—o0, co), then @ must be an entire function, since every open set
in ¢(—oo, co) contains elements with arbitrary large spectra. We shall
speak rather about power series than about analytic functions, so we
give the following

11.10. DeFINITION. A metric algebra 4 is called to have exiension
property if from the fact that a series ) a,z" with complex coefficients
is convergent for every « from an open subset of A it follows that this
series must be convergent for every xeA. We shall show that any m-
convex B,-algebra possesses the extension property if and only if it
is not a @-algebra (see definition 7.7). Before proving this we shall give
some facts about m-convex B,-algebras which are @-algebras. At first
we give an example of such an algebra.

11.11. ExAmvpLE. (0, 1) consgists of all complex functions defined
on the closed segment [0,1], which are continuous together with all
their derivatives. The multiplication is defined pointwise, and the pseudo-

norms are given by
dk
lz); = max2F max | - z(t) '
k<t dt

It is

[@yl; = ma.x2"nla,x|(a;J)(")| = max 2" ma,xl E ) D4 J(k~l)‘
ki k<i

E k - : Z R\ 12l; lyls
\maxz"max ( ) 28 1y%*=Y < max2F ( )_”__‘ = |z .
k<1, 4 Z | | l./ I = kgi c l 2’0 2[,‘5 l li |yli

So 0*(0, 1) is m-convex. It is obviously a @-algebra.
It is easy to see that A is a Q-algebra if and only if the set
= {red :27'eA} has non-void interior, and that every maximal
ideal in a Q-algebra must be closed.

11.12. ProposITION. Let A be an m-comvexr By-algebra. Pul
={red:po(x) <1}, i1=1,2,...,
= {zed : o() < oo},
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where o(x) s speciral radius of x; then the following assertions are
squivalent:

(11.12.1) A is a Q-algebra,
(11.12.2) B 18 a neighbourhood of zero in A.

Proof. If A is a Q-algebra, then there is such a symmetric convex
neighbourhood U of zero that the set {e+a:2e<U} comsists of
invertible elements. We shall show that U <« B. If not, there is an z¢U
with g() >1, so there is a A, [4] >1, that »+ e is not invertible, and
¢+ x/A is also non-invertible in A4, but [1/4] < 1, so ®/1¢U, and e+afA
must be invertible, thus we have proved (11.12.1) - (11.12.2), If 0eint B,
then setting U = B, we have ) a" convergent for each »¢U. The sum
of this series is (e—&)” ', so each element of e— U has an inverse, and A
is a Q-algebra, q.e.d.

11.13. CorOLLARY. If A 18 a Q-algebra, then A = B,,.

Ag another corollary we get the following

11.14. THEOREM. An m-convex Bg-algebra has the extension property
if and only if 4t is not a Q-algebra.

Proof. If A is a Q-algebra, then U = 3B, (cf. proposition 11.12)
is an open set having the property that for each element z¢ U the series
Do is convergent. This series is clearly divergent for z = ¢ so A has
not extension property. Suppose now that A i3 not a @-algebra and
that the series ) a,2" is convergent for any z belonging to an open sub-

set U c A. We claim that ]imsupm = 0. If not, then li.msup’i/lanl
=1/r >0, and so, by theorem 11.4, r;(x) = g(x) <r for each z¢U.
By the same theorem we have 75(z) <, and 80 > (z/2r)" converges for
each zeU. The sum is clearly (e—x/27)~' and there is an open set

1
V=6—§’—U

congisting of invertible elements, so 4 is a @ algebra which is a contra-

diction. Therefore we have ]imfi/la—nl = 0, and hence ) a,2" is convergent
for each ze¢d and A has extension property, g.e.d.

Later on we shall show that any commutative B,-algebra, which
is a Q-algebra must be automatically multiplicatively convex.

It would be interesting to extend theory of multiplicatively convex
algebras onto non-locally convex algebras. There may be many approa-
ches to the definition itself (see e.g. [28]); it seems to be interesting
to see whether every locally idempotent topological algebra must be
a subalgebra of cartesian product of p-normed algebras.

Now we pass to non-m-convex Bj-algebras.
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§ 12. Examples of non-m-convex B,-algebras

TFor gome time it was not clear whether there exist non-m-convex
B,-algebras. The first example of such an algebra was constructed by
Arens [1]. It is the following algebra called L®.

12.1. ExamMPLE (Arens [1]). L* consists of functions summable with
every power p >1 on the interval [0,1], with pointwise multiplication
and norms

= ([lo@Pa)”, k=1,2,..;

the c.ontinuity of multiplication fo]lows from th(, inequality
(fla,(t 1”dt)lm < (flm 2'ndt)l,2"(f| |2ndt)l/2"

It is clearly a B,-space, so it is a commutative Bg-algebra. For L” fail
the following facts true for (commutative) m-convex B, -algebras:

(12.1.1) In A there is af least one multiplicative-linear functional.
(12.1.2)  The operation @ — o~ ' is continuous on V = {wed : 27 ed}.
(12.1.3) In A there is defined every entire function g, i.e. for every en-
tire () = > a, A", the series D a,a" comverges for cach med.
So showing failure of these facts we shall show that L® is not
7-Convex.

Proof of (12.1.1). Suppose to the contrary that in L® there exists
a non-zero multiplicative and linear functional f. So f(e) = 1, e = e(?)
=1 is the unit of L® Therefore f considered as a multiplicative linear
functional on C(0,1) « L° would be of the form f(x) = z(t,), 0 <1i,
<1, for each x¢C(0,1). It is easy to consuuct a funetion #(f) such
that #(f) is continuous on [0,1]={t}, #(t) >C >0, lLim#&(t) = oo,

- L=ty
and zeL”

Clearly # is invertible in L“, and its inverse ¥ is a continuous
function, moreover ¥y(t,) = 0. It follows 1 = f(e) = f(2¥) = f(2)f(¥)
= f(#)y (t,) = 0, and this is a contradiction. So (12.1.1) is proved. It
also follows that any maximal ideal in L” has infinite codimension,
and it is dense. It may be proved that any ideal of L” which is not
dense is properly contained in a closed ideal +# L“, and if I is any
closed ideal of L, then infa(f) > 0, where a(f) is the Lebesgue measure
of the set {te[0,1]:f(t) = 0} (see [27]).

Proof of (12.1.2). Tt is easy to coustruct a sequence of positive
reals «, - oo such that sequence

2, (1) = an%[l + 1 () +1

n
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diverges in L” Here x,(t) denotes the characteristic function of a set
A, ie.
{ 1 if ted,

1) =
W =10 4

On the other hand, there exist z,', and «;* - e.

Proof of (12.1.3). We shall show that only entire functions defined
in L” are polynomials. Suppose to the contrary that ¢(i) = Y a, 2" is
a transcendental entire function defined in IZ“. This follows that
Da,t"a" converges for every wed, t >0, so for any 4

' T R oy
Hma,2";t" =0 and  lLimV]a,||z"|; = 0.
k1

n,——
In particular, limV|a,|[+"], = 0. But
1
", = [ lz@)"dt = |aly.
0
n,——
Thig follows imVa,||a], = 0 for every xed, so if we put

n,—
liell = sup¥lau faln

we would obtain a homogeneous norm giving in L“ the same topology
or system (|z|;), since this gystem is an increasing family of pseudo-
norms, and |a,| 0 for infinite many n. It follows that L” is a Banach
space, which e.g. by (12.1.1) is impossible.

12.2. ExamrLE (Zelazko [28]). An algebra I'* consists of all complex
sequences ¢ = (z,)° sumnmable with any power p >1, with eonvolution
multiplication. So I'" = (M) I7, and as pseudonorms we take p-norms of I,

n>1
where p, is a sequence of reals decreaging to 1. From the fact that

if wely, yel,, then x+yel,, and

1 1

1 .
[l w ylle < Ilelly llylly  for 3)‘ + ‘q" —1= T

where ||z]|, = (3 |#,/")"*, it follows that if we put p, = 1+1/t,, 3, =1,
thor = 2t+1, and |ol, = @, we get [o« Yl < @lsillYllasas s0 T
is a Bj-algebra. We shall show that in I'* there exists a total family of
multiplicative linear functionals, but there fails “Wiener property”
(true by 10.13 for m-convex algebrag), so I'* iz a non-m-convex B, -al-
gebra. So we are going to show that in I't there is an element z such that
f(2) % 0 for each multiplicative and linear functional of I'", but 2z
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does not exist in I'*. To this end we shall show that any (non-zero)
multiplicative and linear functional in I'* is of the form

(12.2.1) F(w) = Fy(a) = 3 4",
0

where A is a fixed complex number with |A| < 1. In this aim we shall
show that if

p(2) = a1
n=0
is & holomorphic function defined in the unit dise, )} z,|” < oo for p >1,
and x(4,) = 0, where |1,] < 1, then
(12.2.2) z(d) = (A—240)y(4),

where D' |y,|° < oo. In fact, let x(1) = (A—2,)y(4), so y(A) is a holo-
morphic function defined in unit dise. Let y(1) = }'y,A". We have
Ty = :‘/n-l_'}‘oyni 50

Ry

oo > (_§|“’n|p)1/7’ > (an_l_ Aoynlu)w
¢ 1

N N
2 (X al)™ =16l (Yl
0 1

for N =1, 2, Therefore

(12.2.3) S — 120l 8] < ( D] leal?)™ + lyal < oo,
where "
n
N, = (Z l?/lclp)lms n=1,2,
k=0

It is to be shown that limsS, < co. Suppose, to the contrary, that
n
lim§, = oco. By (12.2.3)
S,
(12.2.4) 1imS—L = |4 < 1.

n4-1
. o . . .
Consequently, it is also lim]y,| = co, otherwise for certain subsequence
Yn;, 1t would De

[A] = ]imM = limi"i—ilyﬂc_l _

RNay

1,

k-1

which does not hold. Since w,,, = Yn— AgYn41 tends to zero, it follows
that ¥,(yn,, tends to i,, and radius of convergence of ) y,A" would be
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|4| < 1 which contradicts the fact that y(2) is holomorphie in the unit
disc; thus lim§, < co and yel”. Let now 2 = (z,)<l'* be defined by
2, =1, 2, =0 for © % 1, and let I" be an arbitrary multiplicative and
linear functional in I**. Put 1, = F(z). We shall show that |2, < 1.
To this aim interpret any xeI'* as holomorphic function in the unit dise
w(A) = ) #,A". Multiplication in 1+ is then pointwise multiplication
of these functions. So z(A) == 1.

It ecannot be |4,] > 1, since 2— A,¢ is an invertible element of I'*
To show that |4, # 1, it is sufficient to show that |4,| s 1, since rota-
tions (1) — x(¢¥01) are auntomorphism of I!* into itself. To show that
Ao # 1 consider the function

v(A) =%1n(1—,1).

It may easily be verified that v(1)el*+. On the other hand,

1

m = 2]9",)»”, where Dy = O(E[Ti;ji)
(see [35], p. 93, example 8.4), and so v~ '<I'* We have not only this
but also »~'elt. If we had F(2) = 1, then F restricted to I c I'* would
be of the form I'(u) = %(1). So it would be F(v~!) = »~!(1) = 0 which
contradicts the fact that o' is invertible in I'* So F(2) = 4y, and
[Ag] < 1. Now let zel't; by (12.2.2) we may write o — 2(d,)e = (2— 1,6)¥,
50 that Flz—wz(g)e) = (F(2)— ) F(y) =0, and F(x) = (k) which
proves formula (12.2.1). To prove that I*+ has not the Wiener property
we observe that F(e—z) # 0 for each multiplicative and linear func-
tional in I'*, but e—# is not invertible in I'*, since its convolution in-
verse would be {1,1,...}.

12.3. ExampLE (Williamson [26]). W is an example of a non-m-convex
B,-algebra such that there is a dense subalgebra isomorphic with the
division algebra of all rational functions of one variable. Let

(1—p)™t-" for r<-—1,

(12.31) a(n,r)=1{1 for »r=0, =n=1,2,...,
(147)=0" for r>1,

It may be verified that a(n,r+s) < a(4n,r)a(4n,s). The algebra

W consists of all formal power series

z(2) = i‘ 2, A

Tom= =00

such that
@l = Ya(n, Bzl < oo, n=1,2..,
ke
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with “pointwise multiplication” (convolution multiplication of coeffi-
cients). W is clearly a B,-space, moreover,

loyls = X a(n, B)| Y oeaw] < D aln, &) oy
k 14

k1l

< Da(dn, k—Da(dn, 1) [zl il = 1l ¥laa,
kI

so W is a B,-algebra. To prove that all rational functions belong to W
it is sufficient to show that z,(1) = (l—ozl)‘1 , and 1/4 belongs to W;

but this follows from the fact that (1—al)™' = }'a"1", and 2 a(n, k)d

converges for each n. In W there are also no multiplicative ].mear (non-
trivial) functionals, since every such a functional would give an iso-
morphism between the field of all rational functions and field of
complexes.

For other examples, see [17] and [24].

§ 13. Extended spectrum;
theorem on entire functions and its applications
to () -algebras and radicals

In the algebra W (example 12.3) there is a dense subalgebra which
is a division algebra; therefore there is a dense subset consisting of
clements with void spectrum. However, if we take e.g. x(1)eW,
2(A) = A, then the function

(13.0.1) R(p, ) : (1, 2) = (—pue)™"

is continuous (with fixed # = #(1) = 1) at each point u # 0, but is dis-
continnous at the point 0. Taking x(A) = A~', we infer that R(u,z)
is continuous for each complex u, but the function x4 — R(uw, 1) is dis-
continuous for u = 0. So we give the following

13.1. DerinrrioN. Let A4 be a topological algebra. Let weA. The
extended spectrum X4(x) of x is a subset of extended complex plane
(Riemann sphere) C v (oo) and it is defined as
(13.1.1) 2, (2) = o4(x) v {4 : R(A, 2) is discontinnous at 1 = A} v

{oo, if and only if R(1, A») is discontinuous for 1 = 0}.

13.2. ProrosrtioN. Let A be a By-algebra; then the extended spectrum
2 4(z) is never void, moreover, ez‘thev x or x~" possesses spectrum containiny
finite complex numbers, aml Z4(w) = {0} if and only if X (') = {0}.

Proof. If # is non- mvemble in 4, then X, (x) is non- v01d since
o4(x) i8 non-void. Suppose then that x is invertible in A and that
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there is no finite AeX,4(«). Then setting for any continuous Linear fune-
tional f defined on A

r(4) = f(R(2, z))

we get an entire function of A, In fact, this function is defined for each
complex A and moreover

pr(A+do)—o(d) .. [ 1 ]
— 2 = e G Ay ela— o]

= f([B (4, )1,

so it is an entire function of 2. We have also

= 1 0 '
) = — o0 = Y flaHi,
' k=1

k=0

It follows that A*x~* is for each complex 1 weakly convergent to zero,
therefore it is a bounded sequence and t*A*z~* converges for [t] < 1 to
zero in A, i.e. A*s~* converges to zero for each 2. We shall show that
oeX (@), and 0eZ (2"). In fact, if co¢Z,(z), then R(1, iz) would
be continuous at A = 0, this would follow that

lim ¢y (1) = lim f(R(4, 2)) = lim 1)‘(1?, (1, %w))

|A)|=00 |A| =00 |4=00 A

= ltjmtf(R(l, tw)) = 0-f(—e) = 0.

So, since ¢, is an entire funection, it would follow that ¢; = 0 for each f,
or R(A, %) = 0 for each 1, which is impossible. So X (#) = {oo}. It is
clear that no A different from 0 or co can belong to X, (@), If 0¢ X (a™"),
then it would follow that lims” = 0, and since limz™™ = 0 it would
be e = lima™2~" = 0, which is impossible. So theorem is proved, g.e.d.

13.3. OOROLLARY. If co™! =0, 0! = oo, then we have Z,(z”') =
= [Z4(@)]7".

13.4. DEFINITION. The extended spectral radius K ,(x) of an element
zed is defined as

R, (x) = sup|Z4(2)+ {00} for X, (x) # {oo}.
If X, (x) = {oo}, we put Ry(x) =0. R () may be defined also
as R4 (x) = inf{R: R(A, ) is continuous for |i| > R}.
‘We shall prove now a theorem gencralizing a part of theorem 11.4.

13.5. THEOREM. Let A be a By-algebra, and let r\(®)—1r(x) be defined
as in theorem 11.4; then 7,(x) = ry(2) = 14(2) = E4(2).
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Proof. It is 7,(w) = ry(x). Let ¢ > ry(2). We have lim supz/m
< t for each feA*, so (x/t)" tends weakly to zero, and (z/t')" = (z/t)" (/')
tends to zero in 4 for ¢’ > ¢. Therefore, since ¢is arbitrary > #,(2), it follows
that (@/t)" tends to zero for each i >,(x), s0 geries Z(m/t)" converges
in A, and it follows that any series ) @,a" converges in A if its radiug
of convergence is greater than 7,(xz). So 7y(z) = #¢(z). Bubt again, if
|A| >rg(w), then J'(z/4)* converges in A. Its sum equals (e—x/1)"!,
30 there exists (le—z)~'. Let |A], [ > R >rs(). It is

2
),

ll(le—w)‘l—(loe—w)'lll = [(A— o) (e — @) (A6—2) 7]
!

il ] gl G < n-n (D16

where || || is an arbitrary continuous pseudonorm in A. It follows that
R(A,x) is ocontinuous for |A| > rs(w), and therefore 74(z) > R (x). It
remains to show that R,(z) =7, (z). Let |A] > R4(»); so (e—x/A)~" is
a continuous function of A, or (¢e—Az)~' is a continuous function of 2,
for |A| < 1/R,(z). Applyiug to this function any continuous feA* we
have that ¢ (1) =f [ (e—Ax)~'] is a holomorphic function of 2,
|A| < 1/R4(®), and (A Zf (£™)A"; from this follows that A"z" tends
weakly to zero for any Ml < 1/R(=z), so that it tends also strongly, and
for any continuous pseudonorm |lz|| in A4 it is lLm|A"z"| =0, or

hmsupl/llﬂ.”w”ll <1, or hmsupl/llm"ll < 1/|4]. This follows

< A=A

7,(@) = suplimsup¥ o] < i
Il
for each A with 1/|A| > B(x). This follows  (#) < R,(z) which proves
the theorem, q.e.d.

13.6. Remark. Since even in commutative case M may be a void
set (as e.g. for L®), we have ry(2) = 0, but p,(z) may be arbitrary large,
80 it may be 7y(z) < o (w )_n(w). Since for x(t) =1/(1—1), zW,
we have op(z) =@, and Zp(2) = {1}; this follows that it is possible
to have o(z) = r,(2) < B (z). The problem, whether i (z) = R () is
gtill open (we know only that r5(z) < R,(x)).

13.7. Remark. In the case where A is an m-convex B,-algebra
it i8 Zy(x) = ay().

Now we pass to the proof of a theorem characterizing m-convexity
of commutative B,-algebras by means of entire functions. We have
seen that in any m-convex Bg-algebra there are defined all entire fune-
tions, and that in certain non-m-convex algebras (e. g. L*, example 12.1)

there were defined no transcendental entire functions. We have the
following
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13.8. THEOREM. A commuiative B,-algebra A is m-convex if and
only if there is defined every entire function, i.e. for each entire fumction
p(1) = Y a, A", and for each xecA, the series D a,a" is convergent in A.

We shall prove this theorem by means of some lemmas. At the be-
ginning we give the following

13.9. DeFINITION. Let 4 be a topological algebra, and X < A.
We define m-convex hull H(X) of X as

H(X) = conv | J X";
N=1
it is the smallest convex idempotent subset of 4 containing X, so that X
is convex and idempotent if and only if X = H(X).
13.10. LeMMA. Let A be a By-algebra, and let there exists a matriz
Cin of positive reals, t,n =1,2,..., such that

(13'10'1) |$1 e mnli < Oi,n ‘w1|i+l s l"vnliq-l) wk€A7
and
N ,———
(13.10.2) sup¥ 0y, = p; < o0;
n

then A is a multiplicatively conver algebra.
Proof. Put K;(r) = {wed :|z|;<r}; by (13.10.1) and (13.10.2)
we have
2, ... @ul; < P3| ]i41 |2y li415
this follows
1 1
(13.10.3) K (—) cU; = H(KH_1 (—)) c K;(1).
¥ P1
Since U; is a convex, idempotent and balanced neighbourhood of
zero, it forms unit ball of a submultiplicative pseudonorm |lz[l;, satis-
fying in view of (13.10.3)
|lzl; < llells < pall@llesrs

so system (|lz|;}) is equivalent to system (|a|;) and consists of sub-
multiplicative pseudonorms, and so A is m-convex, q.e.d.

13.11. LnmMA. If A is a commutative By-algebra, and there is a mairiz
Ci. of positive reals such that

(13.11.1) Imn|f < Gi,nlwm-lr

and (13.10.2) holds, then A s m-convex.
Proof. Consider the generalization of formula xry = 3[(r+ y)?—a*

—¥*], namely

__1 n n ] .
(18.11.2) T, Ly, = ( W‘) 2'(_1)‘1ilf’,,.(.a.~.l ),
2 k=1
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where
W= 3 (et )
It <ig <., <ip<n
We have
b= o k] On
13.11.3) |2, ... 2,01 = |21)s Tplisi]
( ) ]1 n 1ii+1 n i+ |501l¢+1 lmn‘i.l.li

1 _ _
<ol [@aliny D IWE@ - By

k=1

where %, = @y/|@kli,.,- We have also the following estimation:

[Wh(Z: .. Bl < > @+ +E)
1€ty <., <ty
— n n
< Y GulEt Bl <O ()8 < O (3) 27
1<hy <. <ip<n
From (13.11.3) it follows

N

@1 @l < Oy (20

Our conclusion follows from lemma 13.10, and from the fact that

LimV{2n)"/n! = 2, q.e.d.
Ag a corollary we get also the following

13.12. PrOPOSITION. Let A be a commutative B,-algebra, and U a
convex subset of A. Put V =convU v (— U), and

n 7 — “n n _.n—
Q1p = Vouplay ... @], Qfyp = Vsup|a™|;
P oeP
then

(13.12.1) @h,U < fo",v Sy =9 v < Méﬁbu,va
where

2n
M = max ;— < oo.
n Vnl
Proof. It is clear that Qf, v <Qf;r <@ r. It remains to

prove that @)y =@ v and @ v < MQ,. To prove the first
equality let us observe that

8111)”501 ve a"'n“ = sup “ml cee CU,,H,
z:eU

% 2yeUv(—
S0 it remains to show that if W is any set, then

sup e, ... @) = sup |zy... @,
z, 677 Tieconvl
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Let #,, ..., z,econvW; so

e Zai,mif,my E‘E.mEW’ 0 < at'qn < 1, a:]ld 2(11:"” — 1.

m=1 me=1

So we have

wl ae mln, =
M, M,,

all:pnl “oe an,lnln xl'»)nl “es En’mn’ a:ﬂd § al'ml van an,m_n = 1’
my=1 My =1 m

the terms being between 0 and 1. So

[l ... all < 2 a1,m, “n,mnuﬁl.ml cee ‘?n,m“”
m

-
< Z Upong oo @L,ﬂnns:;p”ml vor Dp|| = BUP iy ... @yl

m Zie

So

sup iz, ... o)l < suplle, ... 2.,
rieconvi’ ;<P

but having W < convW we obtain the equality. To prove Qv < MQ" LU

let us observe that in view of (13.11.2)

Iy .. @l < Zn ACE R

knl
and since U i8 convex

Sup|[WE(ey el < 3 suplfe+ -+, < () w"supla,

x;eU ip<ipt ™
S0

2n)"
(13.12.2) sup]lao1 L || < ( ')- sup [|l="]| < M™sup [jz"),
n. zeU aeU

.’B,I"

and QﬁLH.U < MQE[[,U; q.e.d.
13.13. LeMmA. If A is a commutative B,-algebra, and

k ,—
pi(m) = supV|a"|; < oo

Jor each zed, 1 =1,2,..., then A is multiplicatively convex.
Proof. We have

pi (@) = ]jmma.x’;/kv—"ﬂ )

n k<n

80 p;(2) i8 a function of the first Baire class, which is defined on complete
metric space. This follows that there is a point xye A such that p;(x) is

Rozprawy Matematyezne XLVIT 4
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continuous for # = x,, and so there is a constant ¢ and neighbourhood
U of x, such that p;(#) < O for ze U. Let V = U—a,; thus V is a neigh-
bourhood of zero in A. For any ze¢V we have 2 = 8—2a,, xeU. Thig
follows

n —k _k n n—k k 2
Pl < _}j( )Im"’ o, < ()|w e lakl, < (20)".
|2"|5—1 - k 0li—1 ‘kZ k

We can now find j() > ¢, 7(¢), such that

Kyylr(®) = V, where K,(r)={: |, <r}.

For any
zedA m r(t) eV,
[ l54)
this implies
» n
( T('i)) < (20)",
|mli(i) i-1
or
(13 13 1 |mn|_ < (Eg_)nlml'ﬂ-.
103, ) -1 r(z) HOR

So if we put |#|; = |»|,, and having by induction |2, = |2|,,, We define
|%lks1 = |@lsyy. In view of (13.13.1) the new system satisfies (13.11.1),
80 by lemma 13.11 algebra 4 is m-convex, q.e.d.

The proof of theorem 13.8 follows from the above lemma and from
the following one:

13.14. LeMMA. If A is a Byalgebra, and in A there is defined every
entire fumction, then

n
Pi() = pupV|a"| < oo
n

for i =1,2,... and each xeA.
Proof. If not, then for certain 4,, »,, and sequence of integers %,

R k k
it 1is l/lm'o‘“lio >n, and |#%; /n" >1, so that the function

A
o= e
is an entire function for which ) zf*/n*s diverges, q.e.d.
The following question is open:
13.15. ProBrEM. Is the conclusion of theorem 13.8 true for non-

commutative By-algebras, or, what is equivalent, is it true that if every

commutative subalgebra of A is m-convex, then the B,-algebra A4 is
m-convex ?
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13.16. Remarks. It may be proved that for every entire function ¢
there is a non-m-convex Bj-algebra for which the function ¢ is defined.
The properties of non-possessing entire functions and non-possessing
multiplicative linear functionals are independent for commutative
B,-algebras: there are algebras with functionals and without entire
functions, and without functionals and with transcendental entire fune-
tions (ef. [17]). There are even, for any entire @, commutative B,-al-
gebras having as dense subsets division algebras (as e.g. W, example
12.3), for which ¢ is defined (see [24]).

We give now some applications of theorem 13.8.

13.17. TumorEM. Let A be a commutative Bg-algebra which is a
Q-algebra (see definition 7.7); then A is multiplicatively conves.

Proof. By corollary 7.8, the inversion is continuous in 4, so that
for every zeA it i3 2, (@) = o4(®). Let U be a neighbourhood of zero
in A such that e+ U consists of invertible elements. In a similar way
a8 in proposition 11.12 one may prove that g(x) <1 for each ze¢U.
Since o (%) = E(x), it follows from theorem 13.5 that R, (z) = r(2) < 1,
g0 for each 2 U the series Y o™ converges. But since U absorbs, it follows
that for every entire function p(1) = ) a,A" the series } a,a™ converges
for each z¢A, and so, by theorem 13.8, A is m-convex, g.e.d.

As a corollary we get the following

13.18. TurorEM. Let A be a commutative By -algebra, and A, = rad A
its radical; then A, is an m-convex algebra, provided it is closed.

Proof. Since 4, is closed, 4, = 4, @ {4e} is a closed subalgebra
of A. It may easily be verified that 4, —radA4,, so every element
weA,~ A, is invertible in A,, and 4, is a @-algebra (here X~ Y denotes
the complementation of ¥ in X), so by the previous theorem it is m-
convex, g.e.d.

However the following question is open:

13.19. ProBLEM. Is the radical of a Bg-algebra necessarily closed

Let us remark that the positive answer to the problem 13.15 would
imply proof of theorems 13.17 and 13.18 also in non-commutative case.

§ 14. Elementary properties of entire functions
and characterization of commutative B;-algebras
with and without entire functions

14.1. DEFINITION. &(A) will denote the family of all entire functions
defined in a B,-algebra A. We shall also write (a,) ef(A) instead of
pef(A), where () = D a,A".

14.2. LEMMA. (a,)ef(4) if an only if lima,a™ = 0 for each zeA.,
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Proof. If ge&(4), then obviously lima,z" = 0. Conversely, let
| || be a continuous pseudonorm in 4. We have lim||@, 2" 2"|| = 0 for
each weA, 80 ) '|a,a"| converges for each | [|, and this follows that
Ya,a" converges in 4, and pef(4), q.e.d.

14.3. PROPOSITION. &(A) is an algebra under pointwise addition and
mulliplication (or convolution mulliplication of coeffictents).

Proof. Let (a,), (ba)e&(A4). Obviously (Aa,-+uby)ed(4). Let

n

Cp = Zan—kbk‘
ket

We have

n n
-k 3 -k I
lena™]; = | D)y bkm‘li < D 00k i 1021

fe=0 k=0

Since |@,";,1, and |b,a"|;;; are summable, then so is [e,a"[;, 1 =1, 2,...,
and &0, by lemma 14.2, (c,)e6(4), q.e.d.

It shall be convenient to infroduce certain relations in the set E of
all entire functions of one variable. Therefore, we give the following

n,—
14.4. DErFiNITION. Let (a,)e®, and put p, = 1/|an|. We shall
write ¢’ 2¢" if for corresponding sequences p, and p, it holds

0< liminf?# < limsup@ = o0
pn n

(Here we assume a/0 = oo, for a # 0, and 0/0 =1.)

We shall write ¢' ~ ¢ if ¢’ 3¢ and ¢" <3¢ It is obviously an
equivalence relation. Hquivalence class containing ¢ will be denoted
by {p}. {¢'}2{¢'} means the same relation for each pair of elements.

14.5. ProrosITION. Let A be a Bg-algebra. If pef(A), and if p=3¢,
then ped(A).
Proof. Let ¢ = (a,), v = (b,). There is a constant C such that

n,— n,—
Vibal[V]e,] < C; it |a,| 0, and if |a,] = 0, and = is sufficiently large,
then b, = 0. It follows that |b,| < M"|a,| for large n», so D'b,2" con-
verges in A for every «, since ) a,M"a" converges, q.c.d.

14.6. COROLLARY. If pef(A), then {p} = 6(4), and &(4) = | {p}-
ped(4)

14.7. DEFINITION. 6*(4) ={{p} : p & (A)}. Obviously &(4) = | #*(4),
and {p}3{p}ef”(4) implies {y}e&*(4). We shall call &*(4) (or &(4))
trivial, if it consists of single element {0} (or &(A)is the set of all
polynomials). A Bj-algebra will be called an algebra with entire func-
tions, if £*(A) is non-trivial, otherwise it would be called an algebra
without entire functions.



§ 14, Properties of entire functions 53

We shall characterize now commutative B, -algebras with entire
functions.

14.8. ProrosITION. Let A be a commutative By-algebra; if for any
continuous pseudonorm || || there ewists an open subset U = A such that
for infinitely many n

(14.8.1) £n = sup|l"(| < oo,
xeU

then &(4) is non-trivial.
Proof. Choose an ¢ >0, and open V = A in such a way that

{wt+Ae:weV,|A|<e} e U.

Let A4 denote the set of integers for which &, << oo, where &, are given
by (14.8.1). So A" is infinite by our assumption. For a given ne4” choose
reals a,, p =0,1,...,%, in such a way that |a,| <e, and a, # ag,
p # ¢. We have

n
n A
(2+ ape)* = Z(l)a;: W, p=0,1,...,n.

i=0
This is a system of simultaneous linear equations with matrix m@,;
= (”) a® ; thus det m,; # 0 (it is Vandermonde’s determinant multiplied

l
by binomial coefficients). So there is a matrix g5, p,k=0,...,n,

such that

n
o= Y@t ae), k=1,2,..,n
n=0

This follows
n

n n
. I I N g k s mn — En Y]
sup o] < D IBsisup @+ ape)'| 2, I51sup [l2”] D16,

D=0 =0 D=0
whence

= supl@”|< oo for n=1,2,..
zeV

Now by proposition 13.12, formula (13.12.1), we have
sup lo"| < M5, < oo,
zeW
where W = convV v (— V) is a neighbourhood of zero in 4. So for
a neighbourhood of zero W it is

(14.8.2) yp =sUp | < o0, n=1,2,..
W
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Taking now as || || the norms | |;, and denoting the corresponding numbers,
and neighbourhoods, as given in (13.8.2) by vi, W, and setting

1 1
=0l maxyt
t<n

we get a trangcendental entire function defined in A. In fact, let zed.
For given 4 we choose positive # 7 0 in such a way that z:f;¢eW,;. So

—n 1 —n
n —n n _ 4 ¥ l
™ = I 0t < lenl 7™ 74 = ol <
l<n

for » > ¢, and so lime,s™ = 0, whence, by lemma 14.2, (a,) e (4), q.e.d.
From this proposition we get the following characterization of B,-
algebras with entire functions:

14.9. TeEOREM. Let A be a commutative B-algebra. Then &*(A)
i8 non-trivial if and only if there ewists a matriz Oy, of positive numbers
t,m=1,2,..., such that there exists an equivalent system of pseudonorms
satisfying

(14-9‘-1) lml mnli < Oi,nlwlli-pl) Imn|i+l
for each x;ed, i,n=1,2,...
Proof. If such a system exists, then obviously

(—1—) e (4),

nlmaxd;,
‘LS%

80 £*(4) is non-trivial. Suppose now that &*(4) is non-trivial. So there
is an (a,)ed(4) with inﬁm‘tely many a, # 0. Put
= {wed : |aa"); <1, for k > n}.
Every A% is closed in A, and for fixed ¢ we have
4= U Afm
ne=1

S0 there i3 an n(i) such that U; = intdL, # @. We have
sup]akw"l <1

Te Ui

for each k& > n(i). Let 4 denote infinite set of integers > n(s) such
that a, £ 0 for net’;. So we have

& = sup 2" <

< oo for ned.
zeUy ]
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Thus, by proposition 14. 8 formula (14.8.2), there are neighbourhoods
of zero W; and numbers ¥4 such that

suplmn|¢=7’:b<°°7 hyn=1,2,3,...

zeW

We may assume that W, is convex and symmetric, so in view of
proposition 13.12 we have

BUD [@; ... @,y < My
21,

We can choose now such j(¢) >4, #(¢) >0 that K,ﬁ,(? (%) = W;,
where K,(r) = {wed : |0, < r}. We have then

T

* (1 W,
) Dy
for each zed, 50

&y Z,,

'r(i)n < Mn?’fn

|@1]5¢4) |%nlsq) e
or

1 .
|y oo )y < M- W?leﬂf@)- v [@nliy

If we introduce now a new system of pseudonorms setting ||, = [z|,,
and if |a|, = |@|y,,, then |2 |kpr = |%lsny), and then we get an equivalent
system satisfying (14.9.1) with

M‘ﬂ 1:
n y’” q.'e'd"

O’i,n - r(z)

14.10. COROLLARY. If &*(A) is non-trivial, then there exists an element
(ar)e&(A) with every a;, # 0.

The following theorem characterizes commutative By-algebras with-
out entire functions.

14.11. TunorEM. Lei A be a commuiative Bg-algebra. Then &*(4)
18 trivial if and only if there exists a continuous pseudonorm ||| such that
for each open subset U = A there is an integer N(U), suoh that

(14.11.1) supllz”|| = oo for n = N(U).
U

Proof. If #*(4) is trivial, then by Proposition 14.8, (14.11.1) holds.
If #*(A) is non-trivial, then [jz|| < Clo|; for certain 4, and by (14.9.1)

sup |lo"|| < Cin< o0, q.ed.
[Tl 11
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§ 15. Entire operations in B-spaces
and their applications to entire functions

15.1. DernvTIONS. Let X, ¥ be topological linear spaces. A function
y=F(@,..., %) : X" > Y is called a symmetric n-linear form if it i
linear and continuous in each variable separately, and if it is a symmetric
function of the variables. A homogeneous polynomial of degree n is a
function y = p,(@): X - Y of the form p,(») = F(x,..., v), where F

n times
is a symmetric #-linear form.

It may easily be verified that if X, ¥ are B,-8paces with systems
of pseudonorms respectively (| |;) and (|| |l;), and if P,(2») is a homo-
geneous polynomial of degree 7 acting from X to Y, then for any 7 there
is an integer j(¢) and a constant C; such that

P ()lle < 01|6U|;l(,,)
If P,(x) is a homogeneous polynomial of degree =, then P,(lz)
= A"P,(z) and P,(z+y) = Da(z, y) A% where a,(z, ) are in dependent
k=0

of 2. If P(x) is a continuous mapping acting from X to Y and satisfying
the above relation, then it is a homogeneous polynomial of degree =,
that is there exists a unique symmetric n-linear form F(z,,...,2,),
called the polar form of P such that P(x) = F(x...#). If P is a homo-
geneous polynomial, # its polar form, then
n
P(2+y) =Z(Z) F(@, ..., 2,9, ...,9);

k=0 k n—lk

it is also P(Az+ puy) strongly differentiable, i.e. there exists the limit

tim 2L )@+ py]— P A2+ py ] 2 8

A=0 A ai

and the same with respect to u. P(Az+ uy) = @(4, u) is infinitely many
derivable (with fixed =, %), and

P(Az+ py)

Amig

i

¢ (@) P(iz+y)

oo 1=0

is a homogeneous polynomial of degree k, provided P is a homogeneous
polynomial of any degree. The sum of two homogeneous polynomials
of a fixed degree » is again such a polynomial. If P¥(z) is a sequence
of polynomials of fixed degree ny, Kk =1,2,..., and for each ze¢X there
exigts in Y the limit

Qn(2) = ,lcimPﬂ‘) (x),
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then @,(x) is a homogeneous polynomial of degree %, provided X, ¥
are spaces of type F (see Mazur and Orlicz [12]).
An entire operation is a mapping z — A(x) of the form

where P,(z) are homogeneous polynomials of degree n, and the series
is convergent in Y for each weX.

We are going to prove that any entire operation acting in B,-spaces
is a continuous mapping.

15.2. LEMMA. Let X, Y be By-spaces, and y = A (w) an entire operation
acting from X to Y ; then A (x) is a continuous mapping at the point 2 = 0.

Proof. Let us observe that formula (13.11.2) is also true for homo-
geneous polynomials and corresponding polar forms (the proof of
(13.11.2) not depends upon associativity of multiplication), more exactly,
it P,(x) = IP(xz,...,x), then

7 timos

—1)"' n
P, ...,z,) = ( 2( Wilwy, ooy 1),

where
W@y, .oy my) = 2 Pn(wil‘l‘ +$ik))

1<l <., <lp<n
so in the same way as in Proposition 13.12 we get

(15.2.1) sllvplan(w M"SupIIPn( )|l

where V is an arbitrary open and convex subset of X, W is a neigh-
bourhood of zero in X given by W = conv[V o (— V)], and || || is an
arbitrary continuous pseudonorm in Y. Since )P, (2x) = }2"p,(z) is
convergent in ¥, it follows that for any continuous pseudonorm | ||
we have lim2"| |Pn(a; | = 0, which implies ¢ ,(®) = }|IPn(#@)ll < co for
each xze¢X and each continuous pseudonorm | || m Y. Thus, with fixed
I Il @ (@) is a function of the first Baire class in X, so there is an open
set V < X such that g, (x) < O for every veV Hence DIPu(2)ll < O,
which implies ||P,(z)]|< C on V. It follows, in view of (15.2.1), that

sup||Py (@) < CM"
a7
If



68 11I. B,-algebras

U is a neighbourhood of zero in X, and
C
sup||Pa ()l < "2_7.,‘r
zeU

go for given ¢ we can choose an integral N such that

i €
sup || Px(2)l| < Ch
k=N-+1 ZU

We can find now a neighbourhood U, < U of zero such that for
me U, we have

5 &
||,§p,,(m)—1>.,(0) ||< 3

Thus for any ze¢U, we have

N )
I4.(2)= 4 ©)] = || 3 Pute)—Puf0)+ ,,_ZNI,IP"(””)”

<| Seo-R0 |+ 3 P <
k=0 k=N+1

Thus for every continuous pseudonorm | || in ¥ we have
lim [|4 (@) — A (0)|| = 0,
W=0

80 A(x) is a mapping continuous at the point » = 0, g.e.d.

To prove continuity of A(z) in an arbitrary point we shall use
Taylor expansions.

15.3. THEOREM. If X, Y are By-spaces, and A (x) is an entire operation
acting from X to Y, then A(®) is a continuous mapping.

Proof. Let feY*. Consider function

(16.3.1) 7 (A) = flA @+ )] = D f(Pula—+ Ah),

n=0

where z, h are fixed elements of X, 1 is a complex variable. Consider
an auxiliary function

#1(é,3) = A (4 1)) = 3 (P, (b0t k)]

n=0
-y E(Z’)f[Fn(w oo gh . )] EAE,
N=0 k=0 T Tfkd

where F, is the polar form of P,, (£, A)eC*. Since the right-hand series
converges for each (£,1)eC?, (, h)-fixed, it follows by a theorem of
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Hartogs (cf. [9], p. 108) that the series converges uniformly on com-
pact subsets of C. Setting & =1, we get that the right-hand series of
(16.3.1) converges almost uniformly (uniformly on compact subsets of C),
go that ¢;(1) is an entire function of 1 (with fixed » and k). We can
therefore differentiate the right-hand series of 15.3.1 term by term, so

d 2“" a
S—— 1 — —
ar 7 )L-o et ar f(Pk(m-I-lh)) L_o
But

a
ar

pot )|, =72 Butat )

A=0

Write

d'"r
(k) = W—Pk(aH' M)L_oi

it is a homogeneous polynomial in h of degree n. We have also
D FePm) < o
k=0

for any feY*. It follows that Q¥ (h) weakly tends to zero as k — oo,
so with fixed % (and =) it is a bounded sequence in Y, so for each conti-
nuous pseudonorm | || in ¥ there is a constant ¢ such that

IRPEN <C, k=1,2,...

Applying the same reasoning to A4(2z) = }2"P,(z), we get
2@ (h))| < O, s0

0/
IIQﬂ“)(h)II < E]},’; k=0,1,

It follows that Y'Q¥(h) converges in ¥, so its sum Qn(k) is a homeo-
k=0

geneous polynomial of degree n (cf. [12]). We have

= a
F@u) = D F@OM) = Zme@)|

k=0

It follows that for any fe Y™
-1 n
pr(A) = 2,—7“ f(@n(m) 2",

the series being convergent for each complex 1. So, as before, Qn(h) A" [n!
is weakly convergent to zero, and it is bounded, thus it is strongly
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convergent to zero, and therefore summable. This follows

1
flatatam) =5 Y+ em)
for each feXY*, heX, so

A(GU—‘-h) = Z%'Qn(h)r

and B(h) = A(x+h) is an entire operation in A. By lemma 15.2, B(h)
is continuous at the point » = 0, but it proves that A (z) is continuous
at point @, so it is continuous in X, q.e.d.

15.4. CoroLLARY. Every entire fumction defined in a DBg-algebra A
(commutative or not) 48 a continuous operation A — A,

(This iy a positive answer to a question stated in [17].)

15.5. Remark. From 15.3 it also follows that any entire function
with coefficients a,ed is also continuons. Let us remark that it is
possible for certain B,-algebras to possess entire functions of this type,
having at the same time #*(4) trivial. So we give the following

15.6. Examrre. Let A be the cartesian product of L (example 12.1),
and Banach algebra ¢(0, 1). Clearly £*(4) is trivial. On the other hand, if

1 @
an=(0,—n—|), 0elL ’

1/n! is a constant function from C(0, 1), then clearly the series )'a,z"
converges for each zed.

15.7. ProrosIrioN. Let A{z) = DY'P,(z) be an entire operation acting
from X to ¥, where X, Y are Bo-spaces Then for each continuous pseudo-
norm || || in ¥ and each x,eX, there 18 a neighbourhood V of x, such thai

(15.7.1) Zsup“P z)|| < oo.

Proof. We know, by theorem 15.3, that A4 (z) is a continuous
mapping and that (1) = f(4(12)) is for any fe¥* an entire function
of 1. ¢;(1) = Ef(Pﬂ(m))A", so, by the Cauchy formula

o) 1 I flA(4z))

FPu(e)) = — ()

u'

= 2ni
A= TEI'

Since A (Az) is Riemann integrable on compact subsets of complex
plaue, it follows

1 o A (Ax)

2rf At
r

-Pn(m) = (?),,
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where as I' we take {1: |4 = 2}. So

< 27"sup |4 (Aw)|.

{A=2

(15.7.2)  [|Palo ——H f o

For any complex 4,, 4 (A,x) is continuous function of x, so there
is a neighbourhood V; of x, such that

sup |4 (,2)] < Jl[,1 < o0,
TGVAO
This follows that
sup |4 (Az)|| < 204,

"'EVAO

holds for a meighbourhood of 4,, so covering I' by a finite number of
such neighbourhoods corresponding, say, to 4y, 4, ..., 4, we have

sup sup ||4 (12)] <
TV Al

where V =V, ~ ~ V, is a neighbourhood of the point z, and M =
max (24,, .. l,, So, by (15.7.2),

up [P, (@) < 27",

which implies (15.7.1), gq.e.d.

We pass now to the proof of a theorem on superposition of entire
operations. Before we give the following

15.8. DEriNITION. A mapping 2 — A(1) from complex plane to
a metric space X is called (strongly) differentiable at 2 = 2, if the limit

i A At de)— A ()

A=0 A

oxists in X. If f is a continuous linear functional defined on X, then

a
(e 4] = sl ),
provided A(A) is n times differentiable. The following lemma is obvious.
15.9. LeMMA. If X is a By-space, a, X, and the series A (1) = Ya, A"
converges in X in a neighbourhood of 2 = 0, then
d’llu

——A(2
daﬂ, ( )

A=0

exists and cquals n'la,.
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15.10. Levma. If X, Y are two metrio spaces, A(A) = D'a,A" a dif-
ferentiable funotion on X, and P a polynomial from X to ¥, then P(A(2))
18 also differentiable.

Proof. Let F be the polar form of P, We have

AP (A A+ A0)~ P(A(4)]
= AP ([A(A+Ag) — A (A) + A (A0)]— P (4 (40))]

n—1

_ ;—12(;:) FIAGR+ )~ A(do), oy AR A)— A (Ae)y A (Ro) ... A(A)

ey n —ktimes k times

n—-1
=Z(Z)F(A(l'l'}*;?_‘i(ﬂ“),A(z+},o)~A().o), cony A4 20)— A (),

k=0 n—k~1tlimes

A(h), ..., A()..,)) . nF(%A(z), A ... A(A))

k times n—1 times

A=y

In this way it may be also established the existence of further de-
rivatives of P(4(1)), q.e.d.

15.11. TuroreM. Let X,Y,Z be B,spaces with pseudonorms
respectively (), |z|, and ||z|l,. Let A’, A’ be entire operations: y = A'(w):
X>Y, 2=A4"(y): Y —>Z. Then z = A(w) = A"[A'(»)] 4s an entire
operation acting from X to Z, and

A@) = ) P,(a),
n=(

where P,(x) are homogeneous polynomials satisfying

n

(15.11.1) niP, (@) = d

ar® 4 (a) A=0
Proof. Let
L@ =) Puo), A"(y) = DPi),
N=0 ]

where P,, P, are homogeneous polynomials of degree n. Let feZ* and
put

) = flA o) = S1{P: (4’ ).

Nm0

First of all we shall show that ¢7(A) is an entire function of 1. Since

A'(Jz) = D Py ()",
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it follows that with fixed x it is a differentiable mapping, and, by lemma
15.10, P, (4 (Az)) is also differentiable. Moreover, if we set

a(d) = ZP,(M:), b(d) = 2 P’l(lw))‘-n—l

I=0 l=n41

we get two differentiable mappings of € into Y. But

P (4 () = Py (a()+1°+'0(2)

) ( )F;'[ (0) ... a(2), B(A) ... b(A))A®D,

=0 k-1 times 1 times

where F; is polar form of P, Since Fy [... a(1)... b(2)] is differentiable,
it follows that

n

art

n

—ar

- e[ Yz
I=0

Take complex parameter » and consider the mapping (1, %) > X

given by
D) Pi(m) g

1=0

PR APX At
k

=0

(15.11.2)

Py [4' (22)] ’ Fila(d) ... a(d)] L=

A=0

The series

is convergent in Z, and its %-th term is a homogeneous polynomial of
degree kn in two variables (4,7). So by theorem of Hartogs {cf. [9],
p. 108) the series

P(2,m) = ka[P;: ( li:‘P;(M)"-')], fez*,

is convergent uniformly on compact subsets of (? and may be differen-
tiated term by term, moreover ¢(4,1) is an entire function. So

(15.11.3)
d T, T
| =f( ~ - P{(a2)) =f( B W),
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which holds by (15.11.2). We have then

dn dﬂ,

W‘P(E,ﬂ) =W¢?(l)

’
A==0

A=0,m=1
80 ¢f(4) = @(4,1) and it is an entire function. Moreover

d’l«

T P/ (4 (lm))

(\ P (1)),

=0

NPT

80 it is a homogeneous polynomial of degree n. We shall denote this
polynomial by Q¥ (w), it acts from X to Z. So, by (15.11.3),

ar
) (g
dﬂ” =0 ,%{,f(Q

By the same arguments as in the proof of theorem 16.3, we can
see that the series

No®a)

k=0

converges in Z, and by a theorem of Mazur and Orlicz [12] its sum is
a polynomial @,(z) of degree n acting from X to Z. We have therefore

. > 1 a4
‘Pi(}')= ) T’d_‘pf( )‘ f(Qn(T))7

N:-O

at) = 3f(5r0uta) 7,

and again, as Defore, going through weak convergence to zero of
2"Q,(w)/n! its boundedness, and therefore strong summability we- get
that the series

n=0
or

1

f(4 () [Z -Qa(20)]

for every z¢X, feZ*, 1¢C, and

4@ = Y 2 0.@) = Y P, (o).

converges in Z, so
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Thus A(x) i3 an entire operation (P,(z) = Q,(x)/n!). Moreover, since
A(Ax) = ) Py(l2) = ) P,(x)A", it follows by lemma 15.9 that (16.11.1)
holds, q.e.d.

As a corollary we get the following

15.12. TueoREM. Let A be a Byalgebra and (a,), (b,)e&(4). If
@r = D A"y Py = 20,4%, and p = tpl(tpz(l)) = DO, A", then (O,)e&(4).

Proof. ¢,(p,(2)) is an entire operation acting from 4 to 4. It may
be easily verified that

1 dn
PYRETE ‘Pl(% ) = Cpa"

for each ze¢A. So, by theorem 15.11, the series }'C, 2" converges in 4
for each z, q.e.d.
This solves a problem stated in [17].

§ 16. Final remarks

Let A be a commutative B,-algebra with non-trivial £*(4). We may
assume that its topology is given by a system of pseudonorms satisfying
(14.9.1). Setting @y = Q' \ar) Qs = Quy, Where V = {wed: |2, < 1}
(@, is defined as in proposition 13.12), we have @5, << oo for a< f.

The following Lemma is evident:

16.1. LEMMA. Qg4, Qu, being defined as above, we have the following
inequalities :

(16.1.1) UcV implies Q2y < Q2 p,
(16.1.2) Qa,ﬁ Qupt1s
(16.1.3) 5 < Qairp
(16.1.4) o < Quriss
(16.1.5) e < [Qapl "

We have the following

16.2. PropoSITION. If A is a commutative Bi-algebra, then for any
(a,)e&(A), and any integer o there is a f > o such that

(16.2.1) SUD PrQap < 00,
k]
where p, = vt/la,,l.

Proof. By propositions 15.7 and 13.12 there is in A a neighbourhood
¥V of zero such that

(16.2.2) D an|8Up @ ... Tala < 0.
7 1:i¢'7
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We can choose now a f>a such that {zed:|zlp<?} = V for g
certain r > 0.
But from this it follows that

n ”n,——— k-
]inmsul;)l/t?ﬂ sup l/la:i e Tyl < 1,

[Tl <1/r
which implies (16.2.1), q.e.d.
We do not know the answer to the following

16.3. PROBLEM. Let (a,)e&(4). Is it true thet for any a there exists
a f such that

(16.3.1) ]imanf,ﬁ =0,
n

where p, = VIZJ?

The following problem is also open.

16.4, PROBLEM. Does the class of non-m-convex Bj-algebras possess
the extension property (Definition 11.10) %

The answer to the following question would give a positive answer
to the problems 16.3 and 16.4.

16.5. PrRoBLEM. Let A be a non-m-convex Bj-algebra. Does there
exist a mystem of pseudonorms (|z|,) giving its topology and such that

(16.5.1) oo <Quht (o1 Q5p < Qo)

for any a < %

Note that always for fixed a, f formula (16.5.1) is true for infini-
tely many = (if « is sufficiently large).

16.6. Let (a,)e#(4). By (16.2.2) we have

lim|a,|sup |z, ... #,|, = 0;

=00 TV

therefore setting

(16.6.1) 9le,y = SUp |a,|5Up |2y ... Tyl
n

@1V

we have a Banach space &, of all complex sequences such that |g|,
< co. Moreover, by (16.1.1), we have ||,y < |¢|l,r for V < U, and
therefore &,p > £, y, and the natural embedding is continuous. We may
put now

¢, = limind &, v,
{U}

where {U} is a set of all neighbourhoods of zero in A directed by inclu-
sion. This inductive limit is formed by all sequences a,, such that D) |27
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is convergent in some neighbourhood of zero of A. We have &, = &,,,
and the natural embedding is continuous. Setting

& = lim projé,

we have £ > £(A). The problem is whether the two sets are equal.

There are also some questions connected with the space &(4) (which
may be topologized in a way as in 16.6). Namely &(4) is somewhat anal-
ogous to the “approximative dimension” of topological linear spaces.
&(A) is invariant under isomorphisms, moreover, if A = H(B), where
H is an algebra homomorphism of B onto 4, then &(B) c #(4); if B is
a subalgebra of A, then &(4) = #(B). It would be interesting to check
what are common properties of By -algebras having the same #(4), and
whether #(4) = &#(B) as sets implies that they have the same topology
given by 16.6.
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