Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 7 | 3(24) | 826-839
Tytuł artykułu

Zastosowanie technologii spalania fluidalnego dla energetycznego wykorzystaniapaliw niskogatunkowych i odpadów

Warianty tytułu
Języki publikacji
PL
Abstrakty
W pracy przedstawiono zalety i ograniczenia technologii spalania w palenisku fluidalnym. Na przykładzie odpadów, uzyskanych po procesie wzbogacania węgla kamiennego (łupków węglowych), wskazano możliwość spalania substancji o niskiej kaloryczności (5,8-6,8 MJ/kg) i wysokim udziale części niepalnych (64-72%) w pęcherzowym palenisku fluidalnym. Łupki węglowe spalały się autotermicznie. Średnie stężenia SO2 i NOx, dla temperatury złoża 875ºC i współczynnika nadmiaru powietrza 1,6 były nie wyższe niż 2529 mg/Nm3 i 1560 mg/Nm3. W zaproponowanej technologii będzie konieczna redukcja emisji tych związków poprzez dodatek sorbentu wapiennego do złoża i związków amonowych do strefy nad złożem. Zaproponowane rozwiązanie konstrukcyjne paleniska może znaleźć zastosowanie dla jednostek o mocy do 5MW.
Twórcy
  • Politechnika Krakowska
  • Politechnika Krakowska
  • Politechnika Krakowska
  • Politechnika Krakowska
autor
  • Politechnika Krakowska
  • Politechnika Krakowska
Bibliografia
  • Anthony E. J., Granatstein D. L., Sulfation phenomena in fluidized bed combustion systems, “Progress in Energy and Combustion Science” 2001, t. 27, z. 2.
  • Armesto L., Boerrigter H., Bahillo A., Otero J., N2O emissions from fluidised bed combustion. The effect of fuel characteristics and operating conditions, „Fuel” 2003, t. 82, z. 15-17.
  • Ashman P. J., Haynes B. S., Buckley A. N., Nelson P. F., Fate of char-nitrogen in low-temperature oxidation, Proceedings of the 27th International Symposium on Combustion, 1998, t. 2.
  • Barišić V., Åmand L. E., Coda Z. E., The role of limestone in preventing agglomeration and slagging during CFB combustion of high-phosphorous fuels, Proc. of the World Bioenergy Conference and Exhibition The Swedish Bioenergy Association and Elmia, 27-29 May 2008 Jönköping – Sweden.
  • Brus E., Ohman M., Nordin A., Mechanisms of Bed Agglomeration during Fluidized-Bed Combustion of Biomass Fuels, “Energy and Fuels” 2005,t. 19, z. 3.
  • Busca G., Lietti L., Ramis G., Berti F., Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review, “Applied Catalysis B: Environmental” 1998, t. 18, z. 1-2.
  • Fenimore, C. P., Formation of Nitric Oxide in Premixed Hydrocarbon Flames, Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1971).
  • Fernández Llorente M. J., Díaz Arocas P., Gutiérrez Nebot L., Carrasco García J. E., The effect of the addition of chemical materials on the sintering of biomass ash, “Fuel” 2008, t. 87, z. 12.
  • Glarborg P., Jensen A. D., Johnsson J. E., Fuel nitrogen conversion in solid fuel fired systems, “Progress in Energy and Combustion Science” 2003, t. 29, z. 2.
  • Hanak B., Kokowska-Pawłowska M., Nowak J., Pierwiastki śladowe w łupkach węglowych z pokładu 405, „Górnictwo i geologia” 2011, t. 6, z. 4.
  • Hayhurst A. N., Lawrence A. D., The devolatilization of coal and a comparison of chars produced in oxidizing and inert atmospheres in fluidised beds, “Combustion and Flame” 1995, t. 100, z. 4.
  • Jasieńko S., Biegańska C., Chemia i fizyka węgla, Wrocław 1995.
  • Javed M. T., Irfan N., Gibbs B. M., Control of combustion-generated nitrogen oxides by selective non-catalytic reduction, “Journal of Environmental Management” 2007, t. 83, z. 3.
  • Johnsson J. E., Formation and reduction of nitrogen oxides in fluidized-bed combustion, “Fuel” 1994, t. 73, z. 9.
  • Kasuya F., Glarborg P., Johnsson J. E., Dam-Johansen K., The thermal DeNOx process: Influence of partial pressures and temperature, “Chemical Engineering Science” 1995, t. 50, z. 9.
  • Kilpinen P., Hupa M., Homogeneous N2O chemistry at fluidized bed conditions: a kinetic modeling study, “Combustion and Flame” 1991, t. 85, z. 1-2.
  • Leckner B, Amand L.-E. Emissions from a circulating and a stationary fluidized bed boiler: a comparison, “Proceedings of the Ninth International Conference on FBC”, ASME, Boston, May 3-7, 1987.
  • Leckner B., Fluidized bed combustion: mixing and pollutant limitation, “Progress in Energy and Combustion Science”, 1998, t. 24, z. 1.
  • Leckner B., Optimization of emissions from fluidized bed boilers, “lnternational Journal of Energy Research” 1992, t. 16.
  • Lindström E., Sandström M., Boström D., Öhman M., Slagging characteristics during combustion of cereal grains rich in phosphorus, “Energy and Fuels” 2007, t. 21, z. 2.
  • Lu Z., Lu J., Influences of O2 concentration on NO reduction and N2O formation in thermal deNOx process, “Combustion and Flame” 2009, t. 156, z. 6.
  • Lupiáñez C., Guedea I., Bolea I., Díez L. I., Romeo L. M., Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion, “Fuel Processing Technology” 2013, t. 106.
  • Lyngfelt A., Leckner B., SO2 capture in fluidised-bed boilers: re-emission of SO2 due to reduction of CaSO4, “Chemical Engineering Science” 1989,
  • of SO2 due to reduction of CaSO4, “Chemical Engineering Science” 1989, t. 44, z. 2.
  • Michelsen H. P., Frandsen F., Dam-Johansen K., Larsen O. H., Deposition and high temperature corrosion in a 10 MW straw fired boiler, “Fuel Processing Technology” 1998, t. 54, z. 1-3.
  • Molina A., Eddings E. G., Pershing D. W., Sarofim A. F., Char nitrogen conversion: implications to emissions from coal-fired utility boilers, “Progress in Energy and Combustion Science” 2000, t. 26, z. 4-6.
  • Murakami T., Suzuki Y., Nagasawa H., Yamamoto T., Koseki T., Hirose
  • H., Okamoto S., Combustion characteristics of sewage sludge in an incineration plant for energy recovery, “Fuel Processing Technology” 2009, nr 6, t. 90.
  • Mwabe P. O., Wendt J. O. L., Mechanisms governing trace sodium capture by kaolinite in a downflow combustor, “Symposium (International) on Combustion” 1996, t. 26, z. 2.
  • Nielsen H. P., Frandsen F. J., Dam-Johansen K., Baxter L. L., Implications of chlorine-associated corrosion on the operation of biomass-fired boilers, “Progress in Energy and Combustion Science” 2000, t. 26, z. 3.
  • Ohman M. , Nordin A., Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels, “Energy and Fuels” 2000, t. 14, z. 1.
  • Ohman M., Nordin A., The Role of Kaolin in Prevention of Bed Agglomeration during Fluidized Bed Combustion of Biomass Fuels, “Energy and Fuels” 2000, t. 14, z. 3.
  • Olek M., Kandefer S., Kaniowski W., Żukowski W., Baron J., Carbon shale combustion in the fluidized bed reactor, “Polish Journal of Chemical Technology” 2014, t. 16, z. 2.
  • Pilawska M., Emisja tlenku diazotu towarzysząca energetycznemu wykorzystaniu paliw, Kraków 2013.
  • Pohl J. H., Sarofim A. F., Devolatilization and oxidation of coal nitrogen, “Symposium (International) on Combustion” 1977, t. 16, z. 1.
  • Radojevic M., Reduction of nitrogen oxides in flue gases, “Environmental Pollution” 1998, t. 102, z. 1.
  • Rajaram S., Next generation CFBC, “Chemical Engineering Science” 1999, t. 54, z. 22.
  • Shimizu T., Tachiyama Y., Fujita D., Kumazawa K., Wakayama O., Ishizu K., Kobayashi S., Shikada S., Inagaki M., Effect of limestone feed on N2O emission from fluidized bed combustors, “5th Int. Workshop on Nitrous Oxide Emissions” 1992, Tsukuba, Japan.
  • Steciak J., Levendis Y. A., Wise D. L., Simons G. A., Dual SO2-NOx concentration reduction by calcium salts of carboxylic acids, “Journal of Environmental Engineering” 1995, t. 121, z. 8.
  • Steenari B. M., Lundberg A., Pettersson H., Wilewska-Bien M., Andersson D., Investigation of ash sintering during combustion of agricultural residues and the effect of additives, “Energy and Fuels” 2009, t. 23.
  • Thomas K. M., The release of nitrogen oxides during char combustion, “Fuel” 1997, t. 76, z. 6.
  • Tran K. Q., Lisa K., Steenari B. M., Lindqvist O., A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector, “Fuel” 2005, t. 84, z. 2-3.
  • Twardowska I., Szczepańska J., Witczak S., Wpływ odpadów górnictwa węgla kamiennego na środowisko wodne. Ocena zagrożenia, prognozowanie, zapobieganie, Prace i Studia 35, Wrocław 1988.
  • Urciuolo M., Solimene R., Chirone R., Salatino P., Fluidized bed combustion and fragmentation of wet sewage sludge, “Experimental Thermal and Fluid Science” 2012, t. 43.
  • Werther J., Ogada T., Sewage sludge combustion, “Progress in Energy and Combustion Science” 1999, t. 25, z. 1.
  • Zhang C., Wang Y., Yang Z., Xu M., Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis, “Fuel” 2006, t. 85, z. 14-15.
Typ dokumentu
Bibliografia
Identyfikatory
ISSN
1899-3524
Identyfikator YADDA
bwmeta1.element.desklight-a9f75554-0cf7-41c0-8ea6-5c03d272df4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.