Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 34 | 2 | 33-45
Tytuł artykułu

On the theory of order statistics of the flexible Lomax distribution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the flexible Lomax distribution’s order statistics with graphical and numerical findings. Along with the quantitative measurements, some plots are furnished, including those for the skewness and kurtosis measures. We will dwell on the numerous results that relate to statistics of moments of order. We consider the single and product moment of order statistics from the new distribution. Further, we establish some recurrence relation for single moments of order statistics. We have sought to apply the derived relations to empirically evaluate the moments of smallest (largest) order statistics to establish well-known moments and related measures. For order statistics of a flexible Lomax distribution, exact analytical expressions of entropy, residual entropy, and past latent entropy are determined.
Twórcy
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan
  • Department of Mathematics and Statistics, The University of Haripur, KP, Pakistan
  • Department of Statistics, Islamia College University, Peshawar, Pakistan
autor
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan, smkhan6022@gmail.com
  • Department of Social and Allied Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan
Bibliografia
  • Ali, M. A., and Khan, A. H. Recurrence relations for expected values of certain functions of two order statistics. Metron 56, 1-2 (1998), 107–119.
  • Arnold, B. C. Balakrishnan, N., and Nagaraja, H. N. A First Course in Order Statistics, vol. 54. SIAM, Philadelphia, 1992.
  • Asadi, M; Ebrahimi, N., and Soofi, E. S. Dynamic generalized information measures. Statistics & Probability Letters 71, 1 (2005), 85–98.
  • Dar, J., and Al-Hossain, A. Order statistics properties of the two parameter Lomax distribution. Pakistan Journal of Statistics and Operation Research 11, 2 (2015), 181–194.
  • Di Crescenzo, A., and Longobardi, M. Entropy-based measure of uncertainty in past lifetime distributions. Journal of Applied probability 39, 2 (2002), 434–440.
  • Ebrahimi, N., Soofi, E. S., and Zahedi, H. Information properties of order statistics and spacings. IEEE Transactions on Information Theory 50, 1 (2004), 177–183.
  • Fayomi, A., Khan, S., Tahir, M. H., Algarni, A., Jamal, F., and Abu-Shanab, R. A new extended Gumbel distribution: Properties and application. PLOS ONE 17, 5 (2022), 0267142.
  • Henrick Malik, J. Balakrishnan, N., and Ahmed, S. E. Recurrence relations mid identities for moments of order statistics. I: arbitrary continuous distribution. Communications in Statistics - Theory and Methods 17, 8 (1988), 2623–2655.
  • Ijaz, M., Asim, M., and Khalil, A. Flexible Lomax distribution. Songklanakarin Journal of Science and Technology 42, 5 (2019), 1125–1134.
  • Laz, A., and Rathie, P. On the entropy of continuous probability distribution. IEEE Transactions on Information Theory 24, 1 (1978), 120–122.
  • MacGillivray, H. L. Skewness and asymmetry: Measures and orderings. The Annals of Statistics 14, 3 (1986), 994–1011.
  • Mustafa, G. Ijaz, M., and Jamal, F. Order statistics of inverse Pareto distribution. Computational Journal of Mathematical and Statistical Sciences 1, 1 (2022), 51–62.
  • Nadarajah, S., and Zografos, K. Formulas for Rényi information and related measures for univariate distributions. Information Sciences 155, 1-2 (2003), 119–138.
  • Park, S. The entropy of consecutive order statistics. IEEE Transactions on Information Theory 41, 6 (1995), 2003–2007.
  • Samuel, P., and Thoma, P. Y. An improved form of a recurrence relation on the product moments of order statistics. Communications in Statistics - Theory and Methods 29, 7 (2000), 1559–1564.
  • Shannon, C. E. A mathematical theory of communication The Bell System Technical Journal 27, 3 (1948), 379–423.
  • Sunoj, S. M., Krishnan, A. S., and Sankaran, P. G. Quantile-based entropy of order statistics. Journal of the Indian Society for Probability and Statistics 18, 1 (2017), 1-17.
  • Wong, K. M., and Chen, S. The entropy of ordered sequences and order statistics. IEEE Transactions on Information Theory 36, 2 (1990), 276–284.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-a582be58-aba8-40f3-bd82-b03f707dde60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.