Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 | 157-171
Tytuł artykułu

Ultraproduct for Quantum Structures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantum Kripke frames are certain quantum structures recently introduced by Zhong. He has defined certain properties such as Existence of Approximation and Superposition for these structures. In this paper, we define the ultraproduct for the family of quantum Kripke frames and show that the aforementioned properties are invariant under ultraproduct. In this way we prove that the ultraproduct of each family of quantum Kripke frames is also a quantum Kripke frame. We also show the same results for other related quantum structures.
Słowa kluczowe
Rocznik
Tom
28
Numer
1
Strony
157-171
Opis fizyczny
Daty
wydano
2019-03-15
Twórcy
  • Department of Mathematics Shahid Beheshti University G.C., Evin, Tehran, Iran , ezmoniri@gmail.com
Bibliografia
  • Baltag, A., and S. Smets, “Complete axiomatizationsof quantum actions”, International Journal of Theoretical Physics 44, 12 (2005): 2267–2282. DOI: 10.1007/s10773-005-8022-2
  • Bergfeld, J.M., K. Kishida, J. Sack, and S. Zhong, “Duality for the logic of quantum actions”, Studia Logica 103, 4 (2015): 781–805. DOI: 10.1007/s11225-014-9592-x
  • Birkhoff, G., and J. von Neumann, “The logic of quantum mechanics”, Annals of Mathematics 37 (1936): 823–843.
  • Blackburn, P., F. Wolter, and J. von Benthem, Handbook of Modal Logic, Elsevier, Amesterdam, 2007.
  • Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001. DOI: 10.1017/CBO9781107050884
  • Chang, C., and H. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
  • Goranko, V., and M. Otto, “Model theory of modal logics”, in P. Blackburn, F. Wolter and J. von Benthem (eds.), Handbook of Modal Logic, Elsevier, Amesterdam, 2006. DOI: 10.1016/S1570-2464(07)80008-5
  • Hedlkova, J. ., and S. Pulmannova, “Orthogonality spaces and atomistic orthocomplemented lattices”, Czechoslovak Mathematical Journal 41 (1991): 8–23.
  • Hodges, W., Model Theory, Cambridge University Press, Cambridge, 1993.
  • Kracht, M., Tools and Techniques in Modal Logic, Elsevier, Amesterdam, 1999.
  • Piron, C., Foundations of Quantum Physics, W.A. Benjamin Inc., 1976.
  • Zhong, Sh., Orthogonality and Quantum Geometry, Towards a Relational Reconstruction of Quantum Theory, ILLC Dissertation Series, 2015.
  • Zhong, Sh., “Correspondence between Kripke frames and projective geometries”, Studia Logica 106, 1 (2018): 167–190. DOI: 10.1007/s11225-017-9733-0
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-a5551ca7-08bf-4030-abf1-0358913d0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.