Warianty tytułu
Deconstructing the Scholarly Paper. Ontologies for Semantic Publishing
Języki publikacji
Abstrakty
CEL/TEZA: Celem artykułu jest charakterystyka trzech ontologii opracowanych na potrzeby semantycznego publikowania, których przedmiotem opisu jest artykuł naukowy: SciAnnotDoc, Scholarly Papers Vocabulary with Focus on Qualtitative Analysis, Document Components Ontology. KONCEPCJA/METODY BADAŃ: Przeprowadzona charakterystyka ontologii wpisuje się w koncepcję oceny ontologii opartej na interpretacji obecnych w niej postulatów znaczeniowych. Charakterystyka każdej ontologii obejmuje określenie jej zakresu tematycznego, kontekstu powstania, podstawowych założeń ontologicznych oraz próbę ujawnienia jej postaw epistemicznych. WYNIKI I WNIOSKI: Charakterystyka struktur pojęciowych leżących u podstaw trzech ontologii sieciowych, których celem była reprezentacja artykułu naukowego na potrzeby semantycznego publikowania daje obraz modelu konceptualnego tego artefaktu naukowego, w którym przede wszystkim eksponuje się elementy pełniące określoną funkcję retoryczną. W przeanalizowanych przypadkach model IMRaD nie był podstawowym schematem organizacji treści artykułu naukowego. Ujawnienie postaw epistemicznych w procesie projektowania ontologii nie było możliwe we wszystkich przypadkach. Tam, gdzie jednak udało się to określić, widać zarówno postawy obiektywistyczne, jak i interpretatywne, a także obecność determinantów o charakterze pragmatycznym. ORYGINALNOŚĆ/WARTOŚĆ POZNAWCZA: Modelowanie konceptualne, będące jednym z początkowych etapów projektowania ontologii, jest zdeterminowane określoną postawą epistemiczną, tzn. stosunkiem projektanta do rzeczywistości, który za pomocą ontologii stara się odwzorować jej fragment. Ujawnienie takich postaw jest istotne z punktu widzenia zrozumienia kontekstu postulatów znaczeniowych obecnych w ontologiach sieciowych.
PURPOSE/THESIS: The aim of this paper is to study three ontologies developed in the domain of Semantic Publishing for describing academic papers – SciAnnotDoc, Scholarly Papers Vocabulary with Focus on Qualitative Analysis, Document Components Ontology. APPROACH/METHODS: The study follows the method of ontology assessment and is based on the interpretation of meaning postulates. The study of ontologies is based on the schema: ontology’s scope and domain, considerations of the ontology’s context, ontological premises; furthermore, it attempts to identify of epistemic stance taken during the process of construction. RESULTS AND CONCLUSIONS: The results of the study show that conceptual structures behind these the three ontologies first of all expose rhetorical or discursive elements of scholarly paper. In all of three cases, IMRaD was not the first choice for structuring the content of a publication. It was not possible to fully reveal epistemic stances taken with the regards to the three ontologies. However, when stance was identified, it was possible to discern both objectivist and interpretative approaches as well as pragmatic determinants. ORIGINALITY/VALUE: Conceptual modeling, which is one of the initial stages of the ontology design process is affected by the epistemological approach, i.e. the attitude of the ontologists towards the reality, as they try to represent its part by the means of ontology. Revealing these epistemic stances is crucial for understanding the context of meaning postulates in these knowledge organization systems.
Rocznik
Tom
Numer
Strony
47-69
Opis fizyczny
Daty
otrzymano
2019-06-05
poprawiono
2019-07-04
zaakceptowano
2019-07-06
Twórcy
autor
- Katedra Informatologii, Wydział Dziennikarstwa, Informacji i Bibliologii, Uniwersytet Warszawski, m.roszkowski@uw.edu.pl
Bibliografia
- ANSI/NISO (2018). ANSI/NISO Z39.96–2019. JATS: Journal Article Tag Suite, version 1.2. [online]. Baltimore, Md.: American National Standards Institute [01.06.2019]. https://groups.niso.org/apps/group_public/download.php/21030/ANSI-NISO-Z39.96–2019.pdf
- Bartalesi, V., Meghini, C. (2016). Using an Ontology for Representing the Knowledge on Literary Texts: The Dante Alighieri Case Study. Semantic Web [online], 8(3), 385–394. http://doi.org/10.3233/SW-150198
- Bjeković, M., Proper, H. A., Sottet, J.-S. (2014). Embracing Pragmatics. In: E. Yu, G. Dobbie, M. Jarke, P. Sandeep (eds.), Conceptual Modeling [online]. 33rd International Conference, ER 2014 Atlanta, GA, USA, October 27–29, 2014 Proceedings (431–444). Berlin: Springer. http://doi.org/10.1007/978–3-319–12206-9_37
- Brank, J., Grobelnik, M., Mladenić, D. (2005). A Survey of Ontology Evaluation Techniques. In: M. Grobelnik, D. Mladenić (eds.), Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD 2005) [online], (166–169), [01.06.2019], http://ailab.ijs.si/dunja/SiKDD2005/Papers/BrankEvaluationSiKDD2005.pdf
- Ciccarese, P., & Groza, T. (2011). Ontology of Rhetorical Blocks (ORB). W3C Interest Group Note 20 October 2011 [online], [01.06.2019], https://www.w3.org/TR/hcls-orb/
- Constantin, A., Peroni, S., Pettifer, S., Shotton, D., Vitali, F. (2016). The Document Components Ontology (DoCO). Semantic Web [online], 7(2), 167–181. http://doi.org/10.3233/SW-150177
- Daquino, M., & Tomasi, F. (2015). Historical Context Ontology (HiCO): A Conceptual Model for Describing Context Information of Cultural Heritage Objects. In: Garoufallou E., R. Hartley, & P. Gaitanou (eds.), Metadata and Semantics Research [online]. MTSR 2015. Communications in Computer and Information Science, vol 544 (424–436). Berlin: Springer. http://doi.org/10.1007/978-3-319-24129-6_37
- Fernández-López, M., Gómez-Pérez, A. (2002). Overview and Analysis of Methodologies for Building Ontologies. The Knowledge Engineering Review [online], 17(2), 129–156. http://doi.org/10.1017/S0269888902000462
- Gerstein, M., Seringhaus, M., Fields, S. (2007). Structured Digital Abstract Makes Text Mining Easy. Nature [online], 447(7141), 142–142. http://doi.org/10.1038/447142a
- Gómez-Pérez, A. (2013). Ontology Evaluation. In: S. Staab & R. Studer (eds.), Handbook on Ontologies (251–274) [online]. Berlin, Heidelberg: Springer. http://doi.org/10.1007/978-3-540-24750-0_13
- Groza, T., Handschuh, S., Möller, K., Decker, S. (2007). SALT – Semantically Annotated LaTeX for Scientific Publications. In: E. Franconi, M. Kifer, W. May (eds.), The Semantic Web: Research and Applications (518–532) [online]. Berlin, Heidelberg: Springer. http://doi.org/10.1007/978-3-540-72667-8_37
- Guarino, N., Oberle, D., Staab, S. (2009). What Is an Ontology? In: S. Staab & R. Studer (eds.), Handbook on Ontologies [online]. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978–3-540–92673-3
- Guizzardi, G. (2005, March 1). Ontological Foundations for Structural Conceptual Models [online]. CTIT, Centre for Telematics and Information Technology [01.06.2019], http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf
- Harmsze, F. A. P. (2000). A Modular Structure for Scientific Articles in an Electronic Environment [online]. University of Amsterdam [01.06.2019], https://dare.uva.nl/search?arno.record.id=78293
- Hjørland, B. (2003). Fundamentals of Knowledge Organization. Knowledge Organization. Knowledge Organization, 30(2), 87–111.
- Klein, H. K., Hirschheim, R. A. (1987). A Comparative Framework of Data Modelling Paradigms and Approaches. The Computer Journal [online], 30(1), 8–15. http://doi.org/10.1093/comjnl/30.1.8
- Kuhn, T., Dumontier, M. (2017). Genuine Semantic Publishing. Data Science [online], 1, 1–16. http://doi.org/10.3233/DS-170010
- Liakata, M., Thompson, P., Waard, A. de, Nawaz, R., Maat, H. P., Ananiadou, S. (2012). A Three-Way Perspective on Scientific Discourse Annotation for Knowledge Extraction. In: A. Van Den Bosch, H. Shatkay (eds.), ACL ’12 Proceedings of the Workshop on Detecting Structure in Scholarly Discourse [online], (37–46), [01.06.2019]. Jeju Island, Korea: Association for Computational Linguistics. https://www.aclweb.org/anthology/papers/W/W12/W12-4305/
- Lizzi, V. (2017). Implementation of JATS at Taylor & Francis. In: Journal Article Tag Suite Conference (JATS-Con) Proceedings 2017 [online]. Bethesda: National Center for Biotechnology Information [01.06.2019], https://www.ncbi.nlm.nih.gov/books/NBK425705/
- Mazzocchi, F. (2017). Knowledge Organization System (KOS). In: B. Hjørland (ed.), Encyclopedia of Knowledge Organization [online]. ISKO [01.06.2019], http://www.isko.org/cyclo/kos
- McGuinness, D. L., Noy, N. F. (2001). Ontology Development 101: A Guide to Creating Your First Ontology [online]. Knowledge Systems Laboratory Stanford University [01.06.2019], http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
- Meister, V. G. (2017). Towards a Knowledge Graph for a Research Group with Focus on Qualitative Analysis of Scholarly Papers. In: D. Garijo, W. R. van Hage, T. Kauppinen, T. Kuhn, J. Zhao (eds.), Enabling Open Semantic Science. Proceedings of the First Workshop on Enabling Open Semantic Science co-located with 16th International Semantic Web Conference (ISWC 2017) [online], 71–76, [01.06.2019], http://ceur-ws.org/Vol-1931/paper-10.pdf
- Mika, P. (2007). Ontologies Are Us: A Unified Model of Social Networks and Semantics. Journal of Web Semantics, 5(1), 5–15.
- Mitterer, J. (2017). Conceptual Modeling: Philosophical Considerations. In: H. C. Mayr & G. Guizzardi (eds.), Conceptual Modeling 36th International Conference, ER 2017 Valencia, Spain, November 6–9, 2017 Proceedings (15). Berlin, Heidelberg: Springer.
- Niehaves, B., Becker, J. (2006). Epistemological Perspectives on Design Science in IS Research. In: AMCIS 2006 Proceedings [online], (258–261), [01.06.2019]. San Diego: Idea Group. https://aisel.aisnet.org/amcis2006/430
- Penev, L. (2017). From Open Access to Open Science from the Viewpoint of a Scholarly Publisher. Research Ideas and Outcomes [online], 3, e12265. http://doi.org/10.3897/rio.3.e12265
- Pérez, A. G., Carmen, M., Figueroa, S. De, Villazón, B. (2008). NeOn Methodology for Building Ontology Networks : Ontology Specification [online]. NeOn Project [01.06.2019], http://neon-project.org/nw/Deliverables.html
- Peroni, S., Osborne, F., Di Iorio, A., Nuzzolese, A. G., Poggi, F., Vitali, F., Motta, E. (2017). Research Articles in Simplified HTML: A Web-first Format for HTML-based Scholarly Articles. PeerJ Computer Science [online], 3, e132, http://doi.org/10.7717/peerj-cs.132
- Recker, J., Niehaves, B. (2008). Epistemological Perspectives on Ontology-based Theories for Conceptual Modeling. Applied Ontology [online], 3(1–2), 111–130, http://doi.org/10.3233/AO-2008-0045
- Ribbert, M., Niehaves, B., Dreiling, A., Holten, R. (2004). An Epistemological Foundation of Conceptual Modeling [online]. In: ECIS 2004 Proceedings. Paper 113, (August), (4232–4242). [01.06.2019], https://aisel.aisnet.org/ecis2004/113/
- Ribaupierre, H., de (2014). Precise Information Retrieval in Semantic Scientific Digital Libraries [online]. Archive ouverte UNIGE [01.06.2019], https://archive-ouverte.unige.ch/unige:43165
- Ribaupierre, H., de, Falquet, G. (2018). Extracting Discourse Elements and Annotating Scientific Documents Using the SciAnnotDoc Model: A Use Case in Gender Documents. International Journal on Digital Libraries [online], 19(2–3), 271–286, http://doi.org/10.1007/s00799-017-0227-5
- Shotton, D. (2009). Semantic Publishing: The Coming Revolution in Scientific Journal Publishing. Learned Publishing [online], 22(2), 85–94, http://doi.org/10.1087/2009202
- Shum, S., Clark, T., Waard, A., de (2010). Scientific Discourse on the Semantic Web: A Survey of Models and Enabling Technologies [online], 01.06.2019], http://www.semantic-web-journal.net/content/scientific-discourse-semantic-web-survey-models-and-enabling-technologies
- Studer, R., Benjamins, V. R., Fensel, D. (1998). Knowledge Engineering: Principles and Methods. Data & Knowledge Engineering [online], 25(1–2), 161–197, http://doi.org/10.1016/S0169-023X(97)00056-6
- Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.). (2012). Ontology Engineering in a Networked World [online]. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-24794-1
- Swales, J. M. (2004). Research Genres: Explorations and Applications [online]. Cambridge: Cambridge University Press, http://doi.org/10.1017/CBO9781139524827
- Travers, M. (2011). Politics and Pragmatism in Scientific Ontology Construction. Inconsistency Robustness [online], (May), 1–33 [01.06.2019], http://www.ai.sri.com/~travers/onto-revised.pdf
- Vicente-Saez, R., Martinez-Fuentes, C. (2018). Open Science Now: A Systematic Literature Review for an Integrated Definition. Journal of Business Research [online], 88, 428–436. http://doi.org/10.1016/j.jbusres.2017.12.043
- Vrandečić, D. (2009). Ontology Evaluation. In: Staab S., Studer R. (eds.) Handbook on Ontologies [online]. Berlin, Heidelberg: Springer. http://doi.org/10.1007/978-3-540-92673-3_13
- Waard, A., de (2007). A Pragmatic Structure for Research Articles. In: Proceedings of the 2nd international conference on Pragmatic web – ICPW ’07 (83–89) [online]. New York, USA: ACM Press. http://doi.org/10.1145/1324237.1324247
- Waard, A., de, Breure, L., Kircz, J. G., Oostendorp, H. Van. (2006). Modeling Rhetoric in Scientific Publications. In: V. P. Guerrero Bote (ed.), Current Research in Information Sciences and Technologies. International Conference on Multidisciplinary Information Sciences and Technologies InSciT2006 Badajoz, Spain: 25–28 October 2006 (352–356). Bajados, Spain: Open Institute of Knowledge.
- Zins, C. (2004). Knowledge Organization: An Epistemological Perspective. Knowledge Organization, 31(1), 49–54.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-8fcfd7a2-4408-418a-adc2-fe8384c45746