Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 34 | 4 | 31-52
Tytuł artykułu

Adoption of a newly launched software product in the market by innovation diffusion modelling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The growing significance of software upgrades is one of the most intriguing and pertinent market trends of the last few years. Fierce competition on a worldwide scale combined with the ever-changing environment has rendered software products outdated. During a program’s early stages, increasing efforts are made to increase overall performance before its inherent performance limit is reached. To characterize the process of awareness, appraisal, and decision-making, mathematical models with step structures are presented. The first step is to present a system of ordinary differential equations that includes both the awareness and decision-making stages. Furthermore, it is demonstrated that if the adoption rate is strongly nonlinear, then although there exists a stable equilibrium, it is not a global attractor. It is shown that the system has bifurcation points. The direction of equilibrium bifurcation is also explored.
Twórcy
  • Department of Mathematics, Lovely Professional University, Phagwara, Punjab 144 411, India
autor
  • Department of Mathematics, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan 333 001, India
  • School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, India 144 411
Bibliografia
  • Bayram, M., Partal, T., and Orucova Buyukoz, G. Numerical methods for simulation of stochastic differential equations. Advances in Difference Equations 2018 (2018), 17.
  • Chen, K.-J., and Huang, C.-Y. Using modified diffusion models for reliability estimation of open source software. IEEE Access 11 (2023), 51631–51646.
  • Fadwa, B., El Maroufy, H., and Mousse, H. A. Simulation and parametric inference of a mixed effects model with stochastic differential equations using the fokker-planck equation solution. In Numerical Modeling and Computer Simulation (Rijeka, 2020), D. M. Cvetkovi´c and G. A. Birajdar, Eds., IntechOpen, pp. 91–112.
  • Heydari, M., Avazzadeh, Z., Navabpour, H., and Loghmani, G. B. Numerical solution of fredholm integral equations of the second kind by using integral mean value theorem II. High dimensional problems. Applied Mathematical Modelling 37, 1-2 (2013), 432–442.
  • Jafari-Asl, J., Ben Seghier, M. E. A., Ohadi, S., Dong, Y., and Plevris, V. A comparative study on the efficiency of reliability methods for the probabilistic analysis of local scour at a bridge pier in clay-sand-mixed sediments. Modelling 2, 1 (2021), 63–77.
  • Karatzas, I., and Ruf, J. Pathwise solvability of stochastic integral equations with generalized drift and non-smooth dispersion functions. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 52, 2 (2016), 915–938.
  • Kumar, A., and Garg, D. Reliability technology theory and application. LAP Lambert Academic Publishing, 2019.
  • Kumar, A., Garg, D., and Goel, P. Mathematical modeling and behavioral analysis of a washing unit in paper mill. International Journal of System Assurance Engineering and Management 10, 6 (2019), 1639–1645.
  • Kumar, A., Garg, D., and Goel, P. Sensitivity analysis of a cold standby system with priority for preventive maintenance. Journal of Advance and Scholarly Researches in Allied Education 16, 4 (2019), 253–258.
  • Kumar, A., Garg, D., and Goel, P. Behaviour analysis of a bread making system. International Journal of Statistics and Applied Mathematics 3, 6 (2018), 56–61.
  • Kumari, S., Khurana, P., Singla, S., and Kumar, A. Solution of constrained problems using particle swarm optimiziation. International Journal of System Assurance Engineering and Management 13, 4 (2022), 1688–1695.
  • Kuznetsov, D. F. Stochastic differential equations: theory and practice of numerical solution. With programs on MATLAB. Differential Equations and Control Processes 2018, 4 (2018), 1–1073 (in Russian).
  • Mohammadi, F. Efficient Galerkin solution of stochastic fractional differential equations using second kind Chebyshev wavelets. Boletim da Sociedade Paranaense de Matematica 35, 1 (2017), 195–215.
  • Nayak, S. Numerical solution of fuzzy stochastic Volterra-Fredholm integral equation with imprecisely defined parameters. In Recent Trends in Wave Mechanics and Vibrations: Select Proceedings of WMVC 2018 (Singapore, 2020), S. Chakraverty and Paritosh Biswas, Eds., Springer, pp. 107–117.
  • Parvin, A. J., Beruvides, M. G., and Tercero-Gómez, V. G. In situ technological innovation diffusion rate accuracy assessment. Systems 10, 2 (2022), 25.
  • Rihan, F. A., Rajivganthi, C., and Muthukumar, P. Fractional stochastic differential equations with hilfer fractional derivative: Poisson jumps and optimal control. Discrete Dynamics in Nature and Society 2017 (2017), 394528.
  • Shaikh, S. L. Some applications of the new integral transform for partial differential equations. Mathematical Journal of Interdisciplinary Sciences 7, 1 (2018), 45–49.
  • Shiralashetti, S. C., and Lamani, L. Haar wavelet based numerical method for the solution of multidimensional stochastic integral equations. International Journal of Applied Engineering Research 14, 10 (2019), 2507–2521.
  • Singh, V. V., and Gahlot, M. Reliability analysis of (n) clients system under star topology and copula linguistic approach. International Journal of Computational Systems Engineering 6, 3 (2021), 123–133.
  • Tsai, S.-C., and Chen, C.-H. Exploring the innovation diffusion of big data robo-advisor. Applied System Innovation 5, 1 (2022), 15.
  • Zarei, E., and Noeiaghdam, S. Solving generalized Abel’s integral equations of the first and second kinds via Taylor-collocation method, 2018. Working paper version available from arXiv: https://arxiv.org/abs/1804.08571.
  • Zhang, J. The existence of strong solutions for a class of stochastic differential equations. International Journal of Differential Equations 2018 (2018), 059694.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-765b11c5-9396-45e8-afe3-6f140e7700c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.