Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 34 | 1 | 193-209
Tytuł artykułu

Extended power hazard rate distribution and its application

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new model four-parameter model called the odd generalized exponential power hazard rate (OGE-PHR) distribution has been introduced. Some statistical properties for OGE-PHR are obtained. The moments, quantile, mode, reliability, and order statistics are discussed. Estimation of parameters, maximum likelihood technique is employed. Two real data sets are discussed with applications.
Twórcy
  • Mathematics Department, Faculty of Science, Islamic University of Madinah, Saudi Arabia, amelsayed@mans.edu.eg
  • Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
Bibliografia
  • Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 6 (1974), 716–723.
  • El-Damcese, M. A., Mustafa, A., El-Desouky, B. S., and Mustafa, M. E. Generalized exponential Gompertz distribution. Applied Mathematics 6, 14 (2015), 2340–2353.
  • El-Morshedy, M., El-Sagheer, R. M., Eliwa, M. S., and Alqahtani, K. M. Asymmetric power hazard distribution for Covid-19 mortality rate under adaptive Type-II progressive censoring: Theory and inferences. Computational Intelligence and Neuroscience 2022 (2022), 5134507.
  • El-Sagheer, R. M. Estimation of the parameters of life for distributions having power hazard function based on progressively Type-II censored data. Advances and Applications in Statistics 45, 1 (2015), 1–27.
  • El-Sagheer, R. M., Jawa, T. M., and Sayed-Ahmed, N. Assessing the lifetime performance index with digital inferences of power hazard function distribution using progressive Type-II censoring scheme. Computational Intelligence and Neuroscience 2022 (2022), 6467724.
  • Gupta, R. D., and Kundu, D. Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference 137, 11 (2007), 3537–3547.
  • Ismail, K. Estimation of P (Y < X) for distribution having power hazard function. Pakistan Journal of Statistics 30 (2014), 57–70.
  • Kenney, J., and Keeping, E. Mathematics of Statistics, vol. 1, D. Van Nostrand Company, Princeton, 1962.
  • Khan, M. I., and Mustafa, A. Some properties of the weighted power hazard rate distribution with application. Pakistan Journal of Statistics 38, 2 (2022), 219–234.
  • Khan, M. I. The distribution having power hazard function (DPHF) based on orderd random variables. Journal of Statistics Applications & Probability Letters 4, 1 (2017), 33–36.
  • Khan, M. I., and Mustafa, A. The transmuted power hazard rate distribution and its applications. International Journal of Mathematics and Computer Science 17, 4 (2022), 1697–1713.
  • Kinaci, I. Estimation of P (Y < X) for distributions having power hazard function. Pakistan Journal of Statistics 30, 1 (2014), 57–70.
  • Lawless, J. F. Statistical Models and Methods for Lifetime Data, vol. 20, John Wiley and Sons, Hoboken, NJ, 2003.
  • Luguterah, A. Odd generalized exponential Rayleigh distribution. Advances and Applications in Statistics 48, 1 (2016), 33–48.
  • Mahmoud, M. R., and Mandouh, R. M. On the transmuted Fréchet distribution. Journal of Applied Sciences Research 9, 10 (2013), 5553–5561.
  • Moors, J. J. A quantile alternative for kurtosis. The Statistician 37, 1 (1998), 25–32.
  • Mugdadi, A. R. The least squares type estimation of the parameters in the power hazard function. Applied Mathematics and Computation 169, 2 (2005), 737–748.
  • Mugdadi, A.-R., and Min, A. Bayes estimation of the power hazard function. Journal of Interdisciplinary Mathematics 12, 5 (2009), 675–689.
  • Mustafa, A., El-Desouky, B., and AL-Garash, S. Odd generalized exponential flexible Weibull extension distribution. Journal of Statistical Theory and Applications 17, 1 (2018), 77–90.
  • Mustafa, A., and Khan, M. I. The length-biased power hazard rate distribution: Some properties and applications. Statistics in Transition. New Series 23, 2 (2022), 1–16.
  • Rosaiah, K., Rao, G. S., Sivakumar, D. C. U., and Kalyani, K. The odd generalized exponential log logistic distribution. International Journal of Mathematics and Statistics Invention 4, 5 (2016), 21–29.
  • Sarhan, A. M., and Mustafa, A. A new extension of the two-parameter bathtub hazard shaped distribution. Scientific African 17 (2022), e01345.
  • Schwarz, G. Estimating the dimension of a model. The Annals of Statistics 6, 2 (1978), 461–464.
  • Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M., and Hamedani, G. G. The odd generalized exponential family of distributions with applications. Journal of Statistical Distributions and Applications 2, 1 (2015), 1–28.
  • Tarvirdizade, B., and Nematollahi, N. Parameter estimation based on record data from power hazard rate distribution. In Proceedings of the 13th Iranian Statistical Conference (Kerman, Iran, 2016), Ayyub S., Ed., pp. 668–675.
  • Tarvirdizade, B., and Nematollahi, N. Inference on P (X > Y) based on record values from power hazard rate distribution. Journal of Computational Statistics and Modeling 1, 1 (2022), 59–76.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-60c6ec88-c1ec-488b-a68a-41829c821004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.