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JHAPTER 1

§ 1. Introduction

A yot X is said to be dispersed if it contains no connected subset(?),
i.e. if every component of X is a single point.

A point p of a connected set X is said to be its dispersion point if
X --(p) contains no connected subset. A set X is called pulverable if it
is connected and contains a dispersion point p. The set X —(p) and every
set homeomorphic with X —(p) are called pulverized sets. Every pulver-
ized set, a3 containing no connected subset, is a dispersed set. The con-
verse is not true, of course.

Above forty years ago Kmnaster and Kuratowski introduced [6] the
notion of bhiconnected set. They have used the term biconnected to denote
such 2 connected set as cannot be decomposed into two non-intersecting
connected subsets. Each of biconnected sets oonstructed by Knaster
and Kuratowski contains a dispersion point. Kline has proved [4] that
avery counected set contains at most one such point. It follows that
every pulverable set P containg exactly one dispersion point. Neverthe-
less, Miller has shown [12] that, if the continuum hypothesis is true, there
exists a biconnected set which contuins no dispersion point.

In virtue of the definition, a biconnected get with dispersion point
is pulverable. The converse is also true, because every connected subset
of a pulverable set P mnst contain ifis dispersion point (see Lemma 4.1,
p- 10), and consequently a pulverable set ecannot be a sum of two non-
intersecting and connected subsets.

Wa shall use the term “pulverable set” instead of the name “bicon-
nected sot with (ispersion point”. Consequently, we shall use the short
term “pulverized sat” instead of the long one “a set homeomorphic
with o biconnected sct with dispersion point, whose dispersion point is
removed”. In this way by means of the special name of pulverable sets
we distinguish a Iarge subfamily of biconnected sets; this is in accordanec
with ite importance and its eharacteristic structure, which differs from the

(') In this paper w point set X is said to be connccled it it contains at least
two points and s not a sum of two non-void aeparated subrets.



4 Biconnected sets with dispersion points

gtructure of biconnected sets containing no dispersion point. To the fam-
ily of pulverized sets belongs, for instance (see Roberts [13]), the im-
portant set of all rational points (i.e. points with rational coordinates
only) of the Hilbert space (2).

It seems to be advantageous to get examine more closely the structure
of pulverable and that of pulverized sets. This is the scope of the present
paper.

Throughout the paper all sets (spaces) are separable motric sets. By
virtue of the Urysohn metrization theorem all this amounts to an inve-
stigations of subsets of the Hilbert cube.

The paper consists of 4 chapters.

Chapter I is an introductory one. It contains an introduction (§ 1),
preliminary notions and properties (§ 2), some properties of the new no-
tion of relative quasicomponent (§ 3), and some elementary properties of
pulverable sets (§ 4).

Chapter II contains some results on the structure of pulverable sets.
§ b deals with their connected subsets. Miller has proved ([12], theorem 4,
p. 128) that if B is a biconnected set containing no dispersion point, and
if T is a finite subset of B, then the set B—T is connected. Theorem 5.3
completes this result as follows: if P is a pulverable set, a its dispersion
point, and 7' a finite subset of P— (a), then the set P —T is also connected.
Given any family of pulverable sets, the main theorem of § 6 permits to
construct a new pulverable set (Theorem 6.1). Corollary 6.2 asserts that
for every family of at most 2% pulverable sets there exists a pulverable
set being a union of homeomorphic images of these sets. § 7 deals with
quasicomponents of pulverized sets. A gquasicomponent of a point p
in a set X is the common part of all closed-open subsets of X containing
2. In other words, it is a set of all points geX such that the set X is con-
nected between p and g. It follows at once that every closed-open subset
of a set X is a union of some of its quasicomponents. Theorem 7.1 containsg
a topological characterization of pulverized sets; the remaining theorems
are concerned, among others, with the power and dimension properties.

Chapter III contains solutions of problems concerned with con-
tinnous mappings (§ 8), certain minimal propertios (§ 9) and ¢-connocti-
vity of pulverable sets (§10). For instance, overy connected sot can be
obtained as & continuous image of some pulvorable set (Theorem 8.5).

Chapter IV is the inost extensive of all. It deals with the examples
and theirs constructions. § 11 contains two lemmas on some decompo-
sitions of a segment .# and Cantor set €. These two lemmas are based upon

(*) Exdis has proved [1] that this set has dimension 1, otherwise than in Euelid-
ean spaces and in the Hilbert cube #8o ([10], I, p. 87), where it has dimension 0
{see for instance [3)).
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continuum hypothesis and they will be applied to the construction of
example 3 only. No other theorem or example in this is based on these
lemmas or on the continuum hypothesis; they are effective. Finally, § 12
contains five constructions.

I owe my very warm thanks to Professor Dr. Bronislaw Knaster
who contributed to my investigations by many valuable suggestions.

Notation

" ‘I'he notions and notetion are derived from books [6]) and [11]). Besides, I shall
use in this paper the following notation:
¢ — Cantor set,
4 — Cantor fan, i.e. the union L{,L(” of all segments [ (z) of ends (r, 0)
TE

and (1/2, 1/2), where z¢¥.
J#Ro — Hilbert cube,

P - a pulverable set,
@ - a dispersion point of P,
y - a continunouns funetion mapping a set P—(a) into the Cantor set ¢ (i.e.

w[P—(a)] c %) in such a way that each counter-image under it of
a point is & quasicomponent of P—(a) (“quasikomponentientreue Abbil-
dung™) (3). .

em(N)-- o continnous function mapping a closed subset Af of N in one point
not belonging to (N — M), and such that ¢|N— M is a homeomorphism
(identification of a closet M of N to a point) (4).

§ 2. Preliminary notions and properties

We begin with clementary and partially known lemmas concerning
the subsets of any topological space.

LeEMMA 2.1. If W is open in T and T is open in X, then W is open
in X.

LevMa 2.2, If W 4y closed in 1" and T 1is closed in X, then W 18
closed in X.

Both these lemmas are known ([10], I, p. 26).

LEMMA 2.3. Let Z be a subset of a topological spave X. If a subset W
of X—7 is cloked in X —Z, and if
(1) WAZ -0,
then W s closed i X,

() See an equivalent definition, p. 4.
(1) See @ (X F)op.10.
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In fact, we iufer from the hypotheses W = W ~ (X - %) and (1) that
W=WAU(X-2)vZ]=WA(X—-Z)oWArZ = W.

LEMMA 2.4. Let Z be a subset of a topological space X. If a subset
W of X--7% is open in X —Z, and if

(2) WnZ =0,

then W is open in X.
In fact, since the sets W and Z are disjoint, we have X--W -

(X—~(WwZ)]vZ. Hence, by hypotheses (X—7)--W = (X Z)-—-W
~(X—Z) and (2) it follows that

T—W—(X-W)=X-W~W =[X—(WoZ)]oZ~W
=[X—(Wo2) ZlnW =X—(WoZ)nWoWAZ
=X—(WoZ)nW=X—(WoZ)n W~ [(X-2)v 2]
=X—-(WouZ)yn(X—-Z)AnWowX— X (WoZ)nWAZ

=(X=2)—W]I"nWoeX-(WouZ)nWnZ =0.

It means that X— W< X—W.

LEMMA 2.5. Let Z be a subset of a topologioal space X. If a subset T
of X—Z 1is olosed in X—Z, and a subset W of T v Z is olosed in T Z,
ang if

(3) WAZ =0,

then W 1s olosed in X.
In fact, the hypotheses W == W ~ (T v Z) and (3) imply

(4) W=WﬁT,

and the hypothesis 7' = T~ (X —Z) implies W T = WA T ~ (X -Z).
Therefore, in view of (4) and of the inclusion W < T, we obtain from
the last equality W = W~ (X —2Z). It remains to quote Lemma 2.3.

LeymA 2.6. Let Z be a subset of a topological space X. If a subset 7'
of X—Z is open in X—2Z, and a subset W of T Z is open in T U2,
and if

WnZ =0,
then W is open in X.
In fact, by the hypothesis (Tw2)—W = (TwZ)— W ~(T'w %) and by
the identity (T wZ)—W = (T— —W) < (Z—W) we have (T W) (Z—-W)=

(T—-W)(Z—W)~(TwZ)=T—WATZ—-WAToT-—WAZUZ—W
~Z. Multiplying by T, we easily see that T—W = T—W AT wZ—W
~T in view of T~nZ =0. Hence, a fortiori, T--W o T—WAT.
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It means that W is open in T, and therefore W is open in X—2Z by
Lemma 2.1, because T is open in X —Z. It remains to quote Lemma 2.4,
We ipfer from Lemmas 2.1 and 2.2 that

LEMMA 2.7. A quasicomponent @ of a topological space X which is
open and contains at least two points is conneoted.

Proof. If we suppose the contrary, the quasicomponent @ is a sum
of two non-void and soparated subsets @ = @, @,, i.e. @, and @, are
nou-void, disjoint and closed-open in @. As a quasicomponent, Q is
cloged in X ([10], II, 1. 93), and, by hypothesis, @ is open in:X. There-
fore, by virtne of Lemmas 2.1 and 2.2, the non-void sets @, and Q,
are closed-open in X, which contradicts to () being a quasicomponent.

Now, taking into account the above seven lemmas, we prove some
simple properties of closed-open subsets of subsets of a connected space,
and, in particular, of quasicomponents of subsets of a connected space.

LrEMMA 2.8. Let A be a non-void subset of a conneoted space S. Then
for every subset H of S—A non-void and olosed-open in S--A we have
a4dAn E v .Z ~H £0.

Proof. Tf
(5) A~nAvAn~H =0,

then by Lemmas 2.3 and 2.4 the set H is olosed-open in 8. We have then
a decomposition § = H v (S§—H) into two subsets of § non-void, disjoint
and closed-open in S. Since by hypothesis the space § is connected and
the set H is non-void, we have S—H = 0, whence S « H, and there-
fore A < H, contrary to (6) and to the hypothesis 4 # 0.

LEMMA 2.9. Let A be a non-void subset of a conneoted space 8. Then
for every quasicomponent Q of S—A open in S-—-A we have A~Qw A
~Q #0.

In fact, the inequality follows from Lenuna 2.8, because every quasi-
component @ of the set S—A is olosed in it ([10], II, p. 93).

LEMMA 2.10. Let A be a non-void subset of a connected space S. Then
every quasioomponent Q of 8—A not nowhere dense in § has a positive di-
mension (in each of its interior poinis).

Proof. Since by hypothesis §—@ - 8, we have S—@ # 8 by
Q =@ ([10), II, p. 93). Honce Int(Q) = S—8--Q £ 0. Let peInt(Q).
If dim, @ = 0, then there oxists a neighbourhood U < Int(Q) of the point
p, boundary of which is void, contrary to hypothesis that the set S is con-
nected.

Consider now any continuous function f on a subset 8 — A of a con-
nected space S, carrying S—A into the Cantor set ¥. Every set f~'(1),
where tef(S—A4), is then ([10], I, p. 74) 2 common part of a sequence
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of closed-open subsets of S—A. In fact, let {4,}, 12 . bo a, sequence of

closed-open subsets of the Cantor set ¥ such that (r) = ﬂ 4,. There-

Ne=l

fore .4, ~f(8—A4) is for » =1,2,... a closed-open subset of f(S—A4)
-]

and f~'(z) = Nf' (4. ~f(S—A4)] ([10], I, p. 17, formula 7a). In partic-
Nal

illa.l, it may oceur that f~'(r) is 2 quasicomponent of the sat § - A. At
any rate f~!(r) is a closed subset of the set §—A.

There exlsts (seo [10], I, p. 93) a continuous function defined on
S—A, the range of which is a subset of the Cantor set #, aud such that
counter-image of every point under it is a quasicomponent of the set
S—4 (“quasikomponententreue Abbildung”). This function is denoted
by v, according to the list of notation (see p. 5). Hence

(10) p:8—A4 €,
) 8—4= U v,
rep(S—4d)

(12) ~'(7) ix & quasicomponent of a set §—4 for each zey(S—

LeEMMA 2.11. Let A be a conneoted subset of a connected space S. Then
for every continuous funolion f: S—A — € and every olosed-open subset
A4 of the Cantor set € suoh that A~ f(S—A) # 0, the set
(13) Av U )

reAnf(S—-A)

t8 connected.

For the set () f7'(z) is closed-opun in 8 —4 a§ a counter-image

udAf(S— 4)

under continuous function f of a set 4 ~f(8§—4) closed-open in f(S—A4)
([10], I, p. 74, formulae (3) and (4)). Hence set (13) is connected ([10),
IT, p. 83).

LeMma 2.12. Let A be a connected subset of a connected spaoe S. Then
Jor every continuous function f: 8 — A —> € and every subset 4 of the Cantor
set €, the set
(14) Av U flYv

ref(§—d)— 4

18 conneoted.

Proof. Let us choose for each point tef(§— A)~-4 1 cloved-open
in the Oantor set ¢ subset I'(v) of ¥ such that

(15) rel'(v) c ¥—A.
By virtne of Lemma 2.12 the set

Av U 'y
nel(x) AT(S- o)
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is connected and therefore the set

16 Ao -
( ) 11/(39!)-5 qd'('r)an{S—A)f (77)

is connected too ([10], IT, p. 82). It remains to verify the identity of the
sets (14) and (16).

Since I'(z) i8 a neighbourhood of the point 7, closed-open in ¢ and
fulfilling (16), where tef(S—A4)—A4, we have

e U ),

Ner(v)~1(S— )
whence

(17) U e U U .

1e/(S—d)~-4 ef(S—d)— 4 nel(v)~1(S— 4)
Conversely, by (16) we have
P(r) ~f(8—A) = f(§—4)—4
for each point tef(S—A)—Z. Thus
e U ),

nelr(z)~f(S—-4) 7e(S—.4)—4
whenco
(18) U U e U .
te)(S=A)= 3 nsl(7)Af(S— L) 1f(S—4)—4

By virtue of inclusions (17) and (18) sets (14) and (16) are identical.
LemMMA 2.13. Let A be a closed and connected subset of a sonneoted spaoe
S, let f be a continuous function mapping S—A into the Cantor set €, and
let A be a set of all Tef (S —A) for which dim f~*(v) > 0. Then thesetf (S —4)—

—4 1is either void or uncountable.

Proof. By the definition of 4, we have dimf~!(z) = 0 for each
vef(S—A)—d. If the set f(S—A)—A were non-void and at most
countable, we should have ([10], I, p. 176)

(19) dGm{ U _fn]=0.
IG/(-S‘—.A)—-J
But, by virtue of Lemnma 2.12, the set Av | _f'(r) in

f(§-4)-4
conuected; thereforo it has a positive dimension in each point ([10], II,

p. 80), and so has the ket |J _ f~'(r), becanse the set A is closed.
ref(S—A)— 4

Thus (19) is impossible.

Lemma 2,13 is also valid for f = y. Namely

LeMMA 2.14. Let A be a closed and connected subset of a conneoled
space S. If every quasicomponent of the set S—A is 0-dimenstonal, then
the family of all quasicomponents of S—A is uncountable.
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The last group of lemmas pertains to the so-called identifioution.
For any X < #® and any closed I < /™ therc exists a function
¢p (identification), defined on X v ' and having the following properties
([r0], I, p. 138):
(20) @p if a continuous function,
(21) @p|X—F i3 a homeomorphism,

(22) o@g(F) is 2 point not belonging to the set gp(X ).

These properties imply two following lennnas:

LEMMA 2.15. pp(X v IP)—pp(X—F) = pp(I).

In fact, by (22), pp(F) epp(X w F)—pp(X —F), and by [10] we have

(X v F)—gp(X—TF) c pp(X © F)-- [op(X)—pp(X —T)]
= pp(X) v or(F)—{lep(X) v pr(F)]—gr(F)} = pp(F)

([10], I, p. 17, formulae 1 and 3).

LevMMA 2.16. If for every non-void and closed-open subset H of a set X
(23) HAl £0,

then the set pp(X v IF) 18 connecied.

Proof. The case X = F is trivial, because gy (X v F) - @p(F) is a point.
Congidering the case X —F = 0 suppose that

(24) or(XwF)=MOUN, M #0 N,
(26) MANUHAN =0,
(26) or(F)eM.

We have theu by virtue of (25) and (26),
(27) NAopp(F) = 0.
It follows ([10], I1, p.17 and 74) by (20) that @#![N ~ ()]

=‘I_’_F;1(N)“¢FI¢F(F)=’ 75 (N) ~ g7 or(F), whence, by (27), g5 (N)~
~gr pr(F) = 0, and therefore by F < et (Y (1107, T, p. 17, (11))

(28) ppt (N) A~ I - 0,

The set & is, by (24) and (25), closed-open in gu(X < 1) and therefore
py (20) we infer ([10], I, p. 74, formulac (3) and (4)) that the set ¢’ (N)
is closed-open in gp'ep(X o F) = X U . Hence, by (28), the set g7 (N) c X
is closed-open in X. Supposition N 0 implies rpj,:'(N) # 0. Applying
now (23) to the set H = ¢5'(N) we have qT,—._-leﬁ F' # 0, contrary to (28).
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§ 3. Relative quasicomponents

The new notion of relative (nasicomponent has some interesting
properties whieh will be proved in this paragraph and will be made use
of in the proof of basic property of ¥xample 3 (p. 41) which is one of prin-
cipal results of this paper.

Let A be a subset of a topological space X and let ped. A subset
H of X is said to he an envelope of p if H is closed in X and (p)v A~H
is open in (p)w 4. Since H is closed in X, (p)v A~ H is also closed, and
therefore closed-open, in (p)w A. Now a gquasicomponent of the point p of
the set A relatively to the space X is a commeon part of all envelopes of p.
We shall denote this quasicomponent by Qc,(4, X).

It is obvious that in the case A = X the relative quasicomponents
are identical with quasicomponents.

Relative quasicomponents may intersect and eyen one of them may
be contained in the other. For example, let X be the square of opposite
vertices (0, 0) and (2, 2) and let A be
the union of two sequences of segments
I, ={@,y):2=1-1/n, 0 <y <1} and
Jo={@,9):2=1+1/n, 1 <9y < 2}.
The limit segments I, = {(z,¥): = = 1,
0<y<1} and Jo={(z,y): =1,
1<y <2} do not belong to A, It is
easy to see that the relative quasi-
component of the point (1,0) is the
segment{ I,, that of the point (1,2) —
the segment J,, and that of the point
(1,1) — the union I, v J, (see Fig. 1). L ]

In view of the Lindeléf theorem Fig. 1
({10], I, p. 131) every relative quasi-
component Qc,(4, X) is a common part of a sequence of envelopes of p,
and since the common part of two envelopes of p is an envelope of p,
we may afssume that Qc, (4, X) is & common part of a descending sequenoc
of envelopes of .

Recall that o space X ix said to be peripherically compact if and only
if for every point z¢X there exist arbitrarily small neighbourhoods of =
the boundaries of which are compact.

LEMMA 3.1. Let A be a subset of a periphericaily compact space X
and let ped. If

@) (p) = ﬁlﬂ""
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where {Hp)n_1s,. 18 & desoending sequence of envelopes of p, then there
ewists a descending scquence {Hpln_1,.. 0f envelopes :of p Such that
S(HY) <1/n for n=1,2,...

Proof. Let I, be a neighbourhood of the point p such that the bound-
ary Fr(K,) is compact and 6(K,) <1/n. For every n = 1,2, ... there
exigts m, such that

(2) Fr(K,)~Hp, =0 forany m>m,

(because in the contrary case we should have Fr (K,)~ H,, #0 for m

=1,2,..., whence Ft(K,)~ () Hp # 0 in -view of €Cantor’s theorem
o=l
([10], II, p. 6), but the last inequality is impossible in view of (1) aund of
the definition of K,). We may assume m,,, >m, for n =1,2,. .., of
course. ‘
Putting for n =1, 2, ...

(3) H; = Hm,,,q-l ~n I,

we see that p <H,. Since H, = H,, ,, ~ I, by virtue of (2), H is a closed
gubset of X (n =1,2,...). And since (p) v A ~ Hy, ,, i8, by hypothesis,
an open subset of (p) v'A, and K, is an open subset of X, so by (3) the set
(p)v A~ Hy is an open subset of (p)v 4 (n=1,2,...). Moreover,
8(Hy) <1/n and, by the hypothesisn that H,,, = H, and by the
assumption that m,,, < m,, we easily obtain from (3) that Hj , = H,
forn =1, 2,... Hence the sequence {H,},.,. . satisfies the lemma.

THEOREM 3.2. Let A be a'subset of a peripherically compact space X and
let ped. A neoessary and sufficient condition that dim,[(p)w A] =0 i3

(4) (P) = QG,,(.A,X).

Proof. If dim,[(p) v 4] = 0, then there exist arbitrarily simull closed-
open subsets G of (p) - A containing p. We infer then froin equality
[(p)— A]~ @ = G that @ is an envelope of p. Hence, by the definition of
relative quasicomponent, Qc,(A, X) = @, and consoquently (4).

Conversely, hypothesis (4) implies that (p) == (M) H,,, where {H,},....
n=:1

is a descending sequence of envelopes of p. By virtue of Lemma 3.1 we
can assume that lim §(H,) = 0. Hence there exist arbitrarily small

W —>ad
closed-open subsets (p)w A ~ H,, of (p) v 4 containing p. It means that
diny, [(p) v 4] = 0.
THeorEM 3.3. If A is a subset of a compact space X and ped, then
Qe (A. X) is a continuum.
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Proof. Suppose that
(5) Qo,(4,X)=MvN,

where M and N are non-void, closed in X, and disjoint. Then there exists
an open subset G of X such that

(8) peMc@G and G~ N =0,
By the definition of relative quasicomponent we have
(7) Qe (4, X) = OIH'M
M=

where {H,},.;a,.. i8 & doscending sequence of envelopes of p. We shall
show that

(8) H~AFr(@) #0 for »=1,2,...

For supposing H, ~Fr(G¢) = 0 for some n = n, we have Hnuf\('z_‘
= H, ~G in view of Fr(@) = G—@G, and since, by hypothesis, H,, is
closed in X, so H, ~@ is also closed in X. Moreover, (p)v A~ (H, ~G)

TFig. 2

is open in (p) v 4, because, by hypothesis, (p) v 4 ~ H, isopenin (p)vw 4,
and @ is open in X. Hence H, ~G is an cnvelope of p and therefore, by
the definition of relative quasicomponent, we have Qc,(4, X) =« H, ~G.
But multiplying this inclusion by N we infer, by (5) and (6), that N = 0,
contrary to the hypothesis that ¥ 7 0. The formula (8) is proved.
Sineco (@) is compact as a closed subset of a compact space, for-
mula (8) implies, by virtue of Cantor’s theorem ([10], IL, p. 5), the inequal-
ity (Y[, ~r(@)] 0, ie. Ly (7) the inequality Qe,(4, X)~TFr(@) #0,
ITRED
which contradicets (5) and (6).
1Teneo Qe (4, X) is connected.
Remark. Theoremn 3.3 is not truo in the Ruclidean plane &

Fov let .4 = |J 4,, where 4, is a boundary of a rectangle of vertices
Ne=1

(-n, -14+1/n), (=n, —1—=1/n), (n,1=1/n), and (», -141/n) (nee

Iig. 2).
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The relative guasicomponent ¢¢,(4, &%) of the point p  (0,1)
is the union of two straight lines y =1 and y = —1.

THEOREM 3.4. If A is a subset of a topological space X and ped,
then A ~Qep(4d,X) = Qecp{4, 4).

Proof. If geA—Qo,(A, A), then there exists a closed-open subset
¢ of A such that p <@ and ge A—@. But peG, G is a closed subset of X,
and in view of equality G~ A = @ the set @~ A is open in A. It means that
& is an envelope of p and therefore, by the definition of relative quasi-
component, we have Qc;(4, X) = @ Hence and from fhe assumption
geA—G we infer that ged—Qo,(4, X). So we have proved the inclu-
gion 4—Qcy(4,4) = A—Qc,(A, X) obvionsly equivalent to the the-
gis of our lemma. )

LEMMA 3.5. If W c A c @ X$ and for some vy
(9)  each poini of the set (vgX.#)~'W is a point of condensation of thix

set,
(10) for each quasicomponeni ¢ of A the sel (1) xX.F)~ W Q) ds of power
al most Ry,
then the set of all quasicomponents of A relatively to 6 X.# consisting of
one point only end contained im (tgXI)~ W is dense in (roXF)nW.

Proof. Let us remove from the segment 7, X the closure of each
component of the set (r,xX#)— W . Denoting the remaining ket by I3 we
easily see that (7, X #)— B consists of an at most countable set of segments,
each of which has by its definition and by (9) at most ends comimon with
W, and of points not belonging to W. The set B differs then frow the
set (1o XF) ~ W for at most countable set and therefore by virtue of (9)
the set B is a dense subset of (7, XA)~W.

It follows from (9) by the definition of the set B that if beB wnd if [
i8 & segment contained in 7,X#, one end of which is b, then b iy a point
of condensation of the set 1 ~ W. Therefore, by virtue of the hypotheses
W< A and (10), ther¢ exist arbitrarily small segments J contained in
7o X# such that beJ and the ends of J belong to A —Qe¢,(, 4). In view
of Theorems 3.3 and 3.4 we have then Qe¢,(4, ¢ x#) < J, whenee by the
definition of relative quagicomponent we infer that (b) = Qe, (4, € X#).

Hcnoe B is a denso subset of (7o X.£) ~ W and for oach point beB
the relative quasicomponent Qec,(A, ¥ xX#) consigts of the point b only.

TaeoreM 3.6. If A is a subset of € <% such thal
(11) the set {p: dim, A = 0} 48 nowhere dense in A,

(12) for each open subsct U of € X%, if A~ U 70,
then there emists 280 points te% such that (tX.#)~ A~ Uis of power 280,
then A contains 280 guasicomponents of power 280,

Proof. Suppose that the family of quasicomponents of power 28
of the set 4 is at most countable and denote the nnion of all quasicom-
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pouents of this family by E. Since every quasicomponent of 4 is con-
tained in only one segment =X, so by (12) for each open subset U
of “xf, it A~1 #0, then there exists 2% points ve% such that
(rxf)nk =0 and (tXI)~ A~ U is of power 2%, This casily implies
that the set W of points 7 xped, such that (rx#)~E = 0 and X P
is w point of condensation of the set (rxX#)~ 4, is dense in 4 and
satisfies hypotheses (9) and (10) of Lemma 3.5 for all r,¢% such thatf
(tex#)~E =0 and (roXF)~ A is of power 2%, Hence, by Lemma 3.5.
the set of all guasicomponents of A relatively to ¥ x.# is dense in W
and therefore in A4, and so, by Theorem 3.2, the set of all points pe.d
such that dim, 4 =- 0 i dense in A, confrary to (11).

Thus the theorem ix proved.

ProuLEM. Iy it possible to replace hypothesis (11) of Theorem 3.6
by a weaker one: that dimA 19

§ 4. Elementavy propertics of pulverable sets

According to the list of notations (see p. 5) let P be o pulverable
set. and o its dinpersion point. Therefore

LEMMA 4.1. Bvery conmecled subset of P contains ils dispersion point.

In other words,

LEMMA 1.2. Every quasicomponent of the set P --(a) ts @ dispersed setl.

Lemma 2.8 algo holds for P ad «a instead of S and 4. Thus we ob-
tain following lemma:

Luyva 1.3, [f H ds a closed-open subset of P--(a), then aeH.

Aud by the theorem of decomposition ([10], II, p. 83) we have

LEMMA b, If H is a closed-open subset of P (a), then the set H v (a)
i pulverable.

Lemmuas 2.7 and 2.9 imply

LEMMA 4.0, No one of the quasicomponents of the set P--(a) is open
tn P -(a).

For if some quasicomponent ¢ of the set P-—(a) iy open in P—(a),
then we have ae@ by Lemma 2.9, Hence () containg at least two points,
and therofore by virtue of Lemma 2.7 it-is also eonnected. But it is im-
possible in view of @ = P --(a).

LEMMA LG, The sel. p[P - (a)] 4x « dense in itself subset of the Can-
tor set 6.

Indeed, if o point veyfP--(«)] is an isolated point of the seb
»[P—(a)], and thus open in it, then by (12) of § 2 the quasicomponent
v~ !(z) is open in p~'p[P— (a)] = P (a) ([10], 1. p. 74, formula (3)), con-
trary to Lemma 4.0,



CHAPTER II

§ 5. Connected subsets of pulverable sets

As mentioned above (Lemina 4.1), overy connccted subset of P
contains its dispersion point a. It implies (see also [6], p. 216) that every
connected subset of P is pulverable, and thus wo receive, by applying Lem-
mag 2.11 and 2.12 for § =P and 4 = (a), the two following rosults:

LeMMA 5.1. If f: P—(a) > % is a continuous function, and 4 1is a
closed-open subset of € such that A ~f[P—(a)] # 0, then the sct

(v U fHo)

redn][P-(a))

i3 pulverable and a is tts dispersion poini.
LevMA 5.2, If f: P—(a) — € is a continuous funclion and A is a sud-
set of € such that f[P—(a)]—A # 0, then the set

av U )
re I P—(@)]—4

8 pulverable and a is its dispersion poini.

THEOREM 5.3. If aeF = F ~P, then the set pp(P), obtained from P
by identification of its subset F, is pulverable and pp(F) is its dispersion
poind.

Proof. Since, by (20) of § 2, the funetion pp is continuous, the set
¢r(P) is connected. The set P— (a) is dispersed and so i its subsot P —F;
therefore, by (21) of § 2, the set gp(P--F) iy also dispersed. By virtuo
of Lemma- 2.16 the comnected sot ¢ (P) differs from the dispersed sol
or(P—F) for a point ¢p(F); consequently, this point is a dispersion
point of the set pr(P). Honee tho set g (P) is by Ghe definition pulverablo
and ¢p(F) is its dispersion point.

According to Miller’s theorem ([12], p. 125, th. 4) if B is a bicon-
nectod set not possessing a dispersion point, and if M is a finite subsct of
B, thon the set B— A is connected. Wo have the following theorem:

THEOREM 5.4. If P is a pulverable sel, « its dispersion point, and M
a finile subset of P—(a), then the set P-—-M is connected.
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Proof. Suppose that for some tinite M < P-—(a) the set P — M is not
connected, i.c.

(1) P—M = M'lusz

where A, and M, ure non-void and separated. In view of another theorem
of Miller ([12], p. 120, th. 3) the set M; ~ M confains a connected sub-
set €; (1 == 1 and 2), which implies

(2) aEGlf\Og

by Lemma 1.1, Bul ¢,nC, c (M,v M)~ (M, v M) = M, ~ M, o My~
~MovMy~nMvM=M by the hypothexex M,~M, =0 and (1),
whenee Oy~ (s = M < P -(a), contrary to (2).

§ 6. Summation theorem

THroREM 6.1. Let P, be, for cach ve1', a pulverable set with dispersion
point a., and let I be a olosed subset of the Hilbert oube .#% . If

(1)  the set \UJ [P.—(a,)] is dispersed,
vel

(2) U [Pz"" (a,)]--,lr' #0,

w1
(8) Hy~ B 0 for every olosed-open. subset H, of P.—(a,) and for cvery

rel,
then the set

pp{F Lg [P: —({a:)]}

is pulverable, and ¢p(F) is ils dispersion poini.
Proof. By virtue of Lemma 2.16 we have

(4) 'I’F{L% [P,—(a)]w F} = (PF{% [P, — (a;)] —F} v pp(F).

We infer from (1) and (2), by virtue of (21) of § 2, that the first
member on the right side of equality (4) is dispersed. By the definition
of pulverable get (see p. 3) it remaing then to prove that the union of the
first and the second (i.e. the point @p(F)) member is connected.

Let H Dbe any closod-open subset of Lg[l’,——(a,)]. There exists un

index 7el' such that I ~[P, —(4,)] # 0; the sot H, = H~[P,—(a,)] is
closed-opon in P,— (a,). We infer from this and from (3) that A, ~ F 0,
and consequontly H~ /' £ 0, whence by Lemma 2.16 follows the con-
nectivity of the sct ().

OOROLUARY 0.2. For every family of pulverable sets P, where teT
and T - 2%, there emisis a pulverable set P whioh is a union of homeomorphs
of P, suoh that eaoh two meet only in the. dispersion point of P and beyond
this point are separaied. [JB U)

aAves

Rozprawy Matemalyczne XXXVII z
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Proot. By hypothesis the set 7' i8 equivalent to some subset of the
Cantor set %. Therefore we can assume that 7' = €. Denote by #80 the
subset of the Hilbert cube /% consisting of all points (x,, £,, 24, ...) such
that z, = r. Of course, the set #¥0 is homeomorphic to Hilbert cube s,
Then place separately every set P, into #¥ in such a way that the disper-
gion point a, of P, be the point (v, 1/2,1/2,...). We can do it because
by hypothesis P, c 4™ (gee p. 4), and #® is Lhomoeomorphic with #%,

Moreover, since cubes #% are components of the compact sef, L%Jgo
TE

and P,—(a,) < J¥% for every teZ', the union L% [P,—(a,)] i8 not connect-

ed between uny two elements of it. And since, moreover, the sets .P,— (a,)

are dispersed, hypothesis (1) of Theorem 6.1 is satisfied. Now laet 77 be the

subset of Hilbert oube #*¢ consisting of all points (,1/2,1/2,...), where

0 <2 <1. Therefore a,elF for every ve7. Hence, Dy Lemma 4.3,

hypothesis (3) of Theorem 6.1 is also satisfied. Finally, we have

FrnlJ[P,—(a,)]=0, whence L%[P,—(a,)]—F # 0, i.e. hypothesis (2)
e e

of Theorem 6.1. Thus, in view of the Summation Theorem 6.1, the set
P = gp{F v | J[P,— (a,)]} is pulverable and a = qp(F) is the dispersion
reT

point of P.

Finally, we have a = @p(F)e@p(P;) for cach v<T', and since the sets
P,—(a;) c I¥—F and P,—(a,) c I% —TF are separated if = s ¢', so by
(21) of §2 the sets @p[P.,—(a,)] and ¢@r[P, —(a,)] are separated too.

Remarks. If 7 =1, i.e. in the case of only one pulverable set P,
we can choose by Theorem 6.1 another dispersion point. Namely, it is
sufficient to add to the set P—(a) a closed set F which is not separated
in respect to any closed-open and non-void subset of P—(a), and then
to identify 7 to one point.

If P =a,for teT, ie. if all pulverable sets P, have a sommon dis-
persion point, the Theorem 6.1 be comes a summation theorem for such
pulverable sets.

In a general case we can take the set U_(_a,) as w set /. The hypothe-
el

sis (3) is then realized by virtue of Lemma 4.3.

§ ?. Quuasicomponents of pulverized sets

Now we investigate the topological structurve of pulverizad  sets.
We begin with a characterization of these sets.

Introducing the notion of spread set (“ensemble diffus”), Knastor
characterized topologically the sets homeomorphic¢ with a connected set
without one point (see [8]). Adding to the above characterization a supple-
mentary condition we easily come to a characterization of pulverizod sets.
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A sot G i8 said to be spread in X if @ has common points with both
elements of every decomposition of X into two non-void and separated
subsets ([8], 1. 310).

THEOREM 7.1. A set X s pulverized if and only if
(1) there exists in X a deorcasing sequence of subsets, closed and spread

in X, the common part of which is void,
(2) the set X is dispersed.
Proof. Sufficiency. In view of the theorem proved in [8] it follows
by (1) that the set X is homeomorphic with a connected set Z without
one point. Therefore by (2) the set X is pulverized by definition (sece p. 3).
Necessity, If XX is homeomorphic with a pulverized sefi, then the
theorem in [8] implies (1), and Lemma 4.2 implies (2).
TuroreM 7.2. If P is a pulverable set, a its dispersion point, and M <
c €, then
(3) the set Py = @oxoe{(€ X @) v M X [P—(a)]} is pulverable and az =
Pexe(C X a) 15 its dispersion point,

(4)  the function peyq 18 @ homeomorphism on M X [P— (a)] and ey o {M X
X [P—(a)]} = Py—(an),

(5) every quasicomponent of Py— (ay) 48 a 8¢t pp,o(t XQ), where TeM,
and Q is a quasicomponent of the pulverized set P— (a).

Proof. Wo have (3), because the hypotheses of the Summation
Theorem 6.1 hold here. Indeed, the set M X [P—(a)] = L{l{rx [P—(a)]}

is dispersed, whence (1) of §6. Putting F = ¥Xa we sce that
(¢xa)~ {Mx [P—(a)]} =0, le.

(6) Mx[P—(a)]-¢Xxa=Mx[P—(a)],

whence M X [P--(a)]—% X a #0, ie. (2) of §6. By the inclusion
Mxac%xa and Lemma 4.3 we then have for every reM and for
every closed-open subset H, of X [P — (a)] the inequality H,~ (¥ xa)#0,
whence (3) of § 6.

We have nlso (4), becanse by (20) of §2 (for X = M X [P—(a)]
and P = % x a) and (6) the funetion g, i8 & homeomorphism on M X
X [P--(a)]. By Lemma 2.10,

Paxad M X [P - (4)] 0% X @)@ a{M X [P—(0)]—F X &} = peya(® X ),
whence by (6)
Pl M X [P~ (@))% X @)~ gl M X [P~ (@)1} = geyal® X 0).
Sinee the diminmend is here a subset of the subtrahend,

Pexal M X [P —(a)] w6 X a) = pgya(EX ) = go ol X [P~ (a)]},
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iLe. by notation assumed in (3)
-P)H - ((bm') = (’)lﬂ'xu{ [” x IP— (“) “.

To prove (5) we first show that
(7) every quasicomponent of M X [P-—(a)] is a sel 7X¢, where 7eM

and @ is a quasicomponent of the pulverized set P --(a).

In fact, every one of the sets =X @ i8 obviously & homeomorph of the
yuasicomponent @, and since @ = P—(a), so 7X@ is confained in one
quasicomponent of M x [P—(a)] only. To prove (7) it is sufficient now
to show that for every set z; X@,, where @, is a quasicommponent of P -- (a)
and 7, #1 or @, # @, there ecxists a closcd-opon subset T of M x
X [P—(a)] such that

(8) txQc H and (y,x@)~H =0.

If 7, # 7, then there exists a closed-open subset 4 of M such that
7ved and 1,e¥—4. The set H = 4 X [P—(a)] is evidently & closed-open
subset of M X [P~ (a)], for which (8) is true.

And if @, # @, then by the definition of quasicomponent there exists
a closed-open subset H, of P— (a), which containg @ and is disjoint with
Q,. But therefore the set H = M X H, is a closed-open subset of M x
X [P—(a)], which contains 7X@ and ia disjoint with 7, xX@,, and conse-
quently, for which (8) is true.

Thus we have proved (7), whence, by (4), we have (5).

_ TeeoREM 7.3. Under the hypotheses of Theorem 7.2, if wmovreover
M = ¥, then cvery quasicomponent of the pulverized sei Ppe— (ap) s no-
where dense in Py,

Proof. By (6) of Theorem 7.2 every quasicomponent of the set
Py—(an) i8 a set pg, (T XQ), where 7¢M and Q is a quasicomponent of
P—(a).

We first show that the quasicomponont ¢g,.(7XQ) is a boundary
sot in Ppr— (ay). In fact, M being by Lypothesis dense in €, lot {r,},..1....
be a sequence of different points of M convergent to z. Theroforo {r, X @}
is a requence of disjoint sets convorgent (topologically in M x [P - (a)])
to T X Q). By (4) of Theorem 7. 2, {pe, (7, XQ)} i thon a sequence of disjoint
sots convergent in Pp—ay to the quasicomponent g¢g..(tXQ).

As a quasicomponent of the set Py —a,, it is closod in it ([10], 11,
p. 93), and also, as just proved, boundary in it. It means that the quasi-
component gg,o(7rXQ) is nowhere dense in Py —(ay), and a fortior
nowhere dense in P,;.

TrmorREM 7.4. If a cardinel number m ds such that Ry < wm < 2%,
then there cxists o pulverized set Pp— (apy) comsisting of m quasicompo-
nents, cach of whieh is nowhere dense in Pyy.
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Proof. We shall use a pulverized set P— (a) consisting of 8, qnasi-
components. Such sets exist (see Examples 1 and 2, p. 34). Tet M be
a dense subuet of the Cantor set ¥ such that M — m. The hypotheses
of Theorems 7.2 and 7.3 are then satisfied. Let

Py = ¢eya{®Xav MxX[P—(a)l}.

By (3) of Theorem 7.2 the set Py is pulverable and ay; == g, (€ X u)
iy its dispersion point.

And by (B) of the swme theorem the pulverized set Py — (apr) con-
gists of J 'R, quasicomponents, because by (4) ge. . is 4 homeomorphism.
Now M-R, = m-Ry == .

Finally, by virtue of Theorem 7.3, every quasicomnpouent of the
pulverized set P, —(ar) is nowhere dense in P,

TuroneM 7.6. A ocardinal number m is the power of family of «ll
quasicomponents of a pulverized set if and only if R, < m < 280,

Proof. Since by virtue of (12) of § 2 the counter-images of points
of the set y[P--(a)] are quagicomponents of the set P—(a), the power
of famnily of all quasicomponents of the set P— (a) is equal to the power
of the set y[P — (a)]. In view of Lemma 4.6 we have then Ry < m = 280,

Converrely, if a cardinal number m is such that R, < m < 28,
then there exists by Theorem 7.4 a pulverized set consisting of m quasi-
components (even nowhera dense).

THEOREM 7.6. If m = R,, then there exist three olasses of pulverized
sets ocomsisting of m quasicomponents, namely: all nowhere denses, some
nowhere denses and some 1ot nowhere denses, and all not nowhere denses;
and if m > Ry, then there exist the two first classes only.

Proof. The pulverized sets of the first class exist by virtue of The-
orem 7.4 for any cardinal number n such that R, < m < 2%,

The pulverized sets of the second elass for these cardinal numbers
can be construoted as follows:

Let us take in the cube .#% o pulveruble set P; with a dispersion
point a; and such that P,—(a,) consists of m quasicomponents each of
which iy nowhere dense in P, (such P, exists by Theorem 0.4); let us
also take a pulverable set P, (constrmeted in Example 1) with a disper-
sion peint @, and such that P,-(a.) consists of R, quasicomponents,
not one of which is nowhere dense in Py, Of course, we 1ay assume that
the sets P; and P, are separated. Then the set qg ., (P v Py), by virtue
of the Summation Theovem 6.1 and Lemma 4.3, is a pulverable set with
a dispersion point ¢, ca, (@, < ay). The sets P, and P, being separated, we
infer Ly (20) of §2 that the quasicomponents of the set q,q,[Py v~ Py—

-(a; v a,)] are homeomorphic with the quasicomponents of the sets
P () and P.—(a,). This implies by Lemma 2.15 that tho set
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Payuay (P17 Py— (81 83)] = @o 00y (P1~ P3) — @400, (31~ a5) consists of m+
+8, = m quasicomponents. Moreover, cach of the not nowhere dense
quasicomponcnts remains not nowhere dense, and this means that the
86t @g g, (P v Py) belongs to the second class.

A pulverized set of third class for m = X,is constructed in Examyple 1
(see p. 34), and for m > K, pulverizod sets of the third ¢lass do not
oxist, because every subset of the Hilbert cube .#®0 is goparable.

From Lemma 210 we deduco at oneco

THEOREM 7.7. Bvery quasicomponent of a pulverized set P—-(a),
which is not nowhere dense in P, has & positive dimension.

Similarly, it follows at once from Lemma 2.14, by substitution 8§ = P
and A = (a), that

TeEOREM 7.8. If all quasicomponents of the pulverized set P—(a)
-are 0-dimenstonal, then the family of quasicomponents is uncountable.
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§ 8. Continuous images of pulverable sets

LEMMA 8.1. If § 8 a oconnected set, peS and A = €, then the sel
(1) (4% 8) v (S xp)

18 connected.

In fact, since X pef X p and peS imply vX per X §, then not one
of connected sets vX 8, where 7¢4, is geparated with a segment .# x p,
and consequently, the set (1) is connected ([10], IL, p. 82).

LemMa 8.2. If 8 is a connecled set, peS, and a set D disjoint with
I X p disconnects the cube SFX0 between some points of the sel 7 =
(€x 8)w (FXp), then the set

(2) {r: 7€, (X 8)~D 0}

contains an open subset of the Cantor set €.

For otherwise, if the complement A of the set (2) with respect to the
Cantor set ¥ were dense in ¢, the subset (4 X 8) v (S X p) of Z— D would
be denke in Z —D, and as, by Lemma 8.1, this subset is connected, the set
Z—D must be also connected ([10], IT, p. 83), & contradiction.

LeEMMA 8.3. If 8 is a connected set and peS,then € X S« €X8—F X p.

Proof. It is sufficient to prove that the rest, i.e. the set ¥x §—
—(XS8S—FXP) = (¢x8)~ (FXp) is contained in ¥xX §—F X p. Butb

(3) (EX8) A (EXP) =F~FIXSn(p) =¥¥XDp,

becanse, by hypotheyis, €</ and (p)<S. Now, as connccted
by hypothesis, the set § is denge in itself, whence (p) = §—(p),
and  therefore €xXp c €X8—(p) = €X[S—(p)] = €¢xX8—-Fxp =
€x 8 -—-'"(-(ETSF\_ (f xjo) = Q'Q—S:Tf%, where the last but one sign
of equality follows by (3).

LimmMA 8.4. If g is a continuous function defined on a compact sel
X and A,c X for n =1,2,..., then g(ﬂEiA,,) =ﬂ£3°g(An).
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Proof. The left side is contained in the right. For if g(c)eg( Ls 4,),
1—>00
i.e. e Ls A,, then by the definition of Lz ([10], I, p. 243) there oxists
o0
a sequence of points {wy }n—1s,.., sach that

srve

(4) Ore,, € A,y where &, < ky < Ky -7 ..o,
(B) w = lin g, .
t—>m0

We have gl )eg(dy,) for v = 1,2, ... by (4), and in view ol the con-

tinunity of the function g we have alse y(x) — lim g(wy,) by (b). There-
n—>00
fore g(w)e Ls g(Ay,), whenee ([10], I, p. 243, formula B) g(0)e Ls g(4,).
n—»00 M—~»00

Conversely, the right side is contained in the left. For if y e Ls g(4,),
n—co

then, by the definition of Ls, there exists a soquence of points {y; },..;,
such that

(6) Yr€9(Ar,), where Iy < ky <l <...,

and y = limy, . Since the set X is compact and the function ¢ is con-
fi=»00

tinuous, we have ([10], 1L, p. 36)

(7) Ls 97 (W) = 0 7' (9)-
f—00
We infer from (6) that g='(ye,) 4y, #0 for n ==1,2,... The
non-void subsets g“’(ykn) ~ A, of the compact set X contain a convergont
subsequence ([10], TL, p. 21). Therefore Lsg~'(ys,)~ 4z 7 0, whence

N—>00

([10), I, p. 248, formula 1) Lag '(ys,)~ Ai, # 0. Hence there exists
a convergent sequence of points {wmk"}n,_,,gw such that

: -1
(8) Ty, €0 (Umy, ) Ay, Where oy <y, ...
L(‘.l‘.
(9) 2 = 1, .
n
N—o0

We conclude from (9), (8), and (7) that

(10) weg H(y).
We have e Ls Amku by (8) and (9), and then ([107], [, p. 243,
n~—»00
fornmla 5) we Ls A,. Hence, in view of (10), y = g(x)eg( Ls A4,,).
h=->00

h—r00 '
TiEoREM 8.b. Bvery connected sel 8 is a continuous image of a pul-
verable set P,
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=

Proof. Let peS, Z ~= (4 X 8) v (4 Xp), and let »(x) be the projection,
parallel to the m-axis, of » point # onto the hyperplane @, = 0. Then

(11) % x8) = 0% 8,
(12) Ixp=r " (0xp).

The construction of the pulverable set P, of whieh 8 lias to be a con-
tinuous image, will consist in a selection of a point or a pair of points
from some (nob necessarily from all) sets X8, where 7<%, in such a
way that (0 X8)—(0xp) will he the image of the set of selected point
under projection », the set of selectied points will be dispersed, but its union
with the segment £ X p will be connected. The set P will arise from the
latter Dby identification of # xp.

For this purpose et 4 = ) %, be a decomposition of the Can-

[[B<7EN |
tor set ¢ into 2% subsets disjoint and dense in %(5), and let {D,}o 1
be the family of all sets disconnecting the cube #%¥0 between some points
of 7 and disjoint with # X p, i.c.
(13) U l),,ﬁ(.f)(p) ==,
[[E=ot/ Sl |

The sef (2), as containing by Lemma 8.2 an open subset of 4, has

common points with each %, in view of iis density in #; then

(14) ((grp X S) m 'I)y’ £ 0 for 0 2L i ‘\ 1.

Let K, be the union of points selected one by one from sach non-
void set of the sets (zX 8)~ D, for re¥, and-0 <<y <1; then

15) B, ~ (tx 8S) for each 7e% is void or consists of a single point
1 b

(16) Ey~ D, #0 for 059 <x1,
and B, ¢ U D,, whence by (13) l
[f< 41
(17) ]!"l e (J‘ > [)) = .
In view of (16) and (13)
(18) the seb K, o (# < p) is conneoted.

Furthermaove, if ¢e(%x S)—(#£xp), then the boundary of any
arbitravily small neighbourhood of ¢ is one of disconnecting sets D, in
view of their definition. Therefore, by (16), the point ¢ is a eluster point
of the set K,. ITenee by Lemma 8.3
(19) I, is » dense subset of €% S.

(%) Sueh decompositions exist. It is sufticient to takoe the decomposition (which
iy effective, see [6], . 254) of a segment [0, 1] into 280 subsets disjoint and dense
in [0, 1] and then the connier-images of these seta, under a well known ‘fonction
sealariforme”™ of Candor.
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Finally,
(20) 0% pesto—r(B).
For if 0 X per(H,), then »~'(0 X p) ~ B, # 0, which implies by (12)

the inequality (X p) B, # 0, contrary to (17).
By (19) we bave B, c« € X S, whence wo infer by (11) and (20) that

r(B) c(0x8)—(0xp). I

(21) [(0 X 8)— (0 X p)]—7(F,) # 0,

then we make up the set &, by a set H, in gsuch a way that
(22) r(B,v B,) = (0 X 8)—(0X p).

Namely, let us order to each point ge[(0x 8)—(0Xp)]—7(B,) in
a one-to-one way @ point 7,¢#, and thus & point ¢'er,x § such that
r(¢') = ¢. Put

B; = {q': ¢ egX 8, ge[(0 X 8)—(0xp)]—r(I),7(g') = g}-
If (21) is not true we have B, = 0, of course. Thus we have in overy case
(23) B,c¥x8,

(24) B, ~(rXx0) for each 7<% is void or consists of a single point.

It follows by (12) from ge(0x 8)—(0x p) that r~*(g) ~r~'(0X D)
=¢"1(q) ~ (#F X p) = 0, whence E, ~ (J x p) = 0 by the definition of I,.
Hence we have by (17)

(25) (By v By) ~ (F %) = 0.

It follows from (23) and (19) that B, v E, =« ¥x §, and since the
set € S is not connected between any pair of its subsets 7, X § and
1, X 8, where ,¢%, 1,¢% and r, # v,, 50 by (16) and (24)

(26) the sot E, v E, is dispersed.
Now put
27) P = ggpup[Bh v By (J X D)].
By (20) of §2 and by (26) the set P is connected ([10], LL, p. 80).

Moreover, this set differs by Lemma 2.15 from the sot ¢, ,[B, v By—
—(F x p)] for a point

(28) a = ‘Plxn(yx.'p)’

and the set ¢ [, v E,— (# x p)] i8 dispersed by (20) and (26), because
Psxp 18 by (20) of § 2 a homeomorphism on X —7 = B, v B,—(F X p).
Hence, in view of the definition of pulverable set (sec p. 3), the sot P
is pulverable and « is its dispersion point.
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Finally, we show that the function r¢}}, maps continuously the set
P onto the set 0x S = §. Indeed, we have, by (25), B, B,— (5 X p)

top

= B, E,, whenco by Lemma 2.15 and (12)
q’Jx‘n(El v ) = Py [ By v By— (JXP)]
= Pyyup By v By v (F X D) —@pyp(f X D) = P—(a),

and therefore ¢y, is by (21) of §2 a homeomorphic mapping P—(a)
onto B, v F,. Henco, by virtue of (22), the function rp3., maps in a con-
tinuous way the sot P— (a) onto the set (0 X §)— (0 X p). And for the point
a wo have by (28) and (25) (p}x,,(a) J X p, whence rgyy,(a) =0x7p
by (12), and consequently rpz.,(P) = 0x S.

It remains to prove that this mapping is continuous at the point a.
Let ¢ = limz,. Then Ls @y} ,(2,)  ¢rk,(a) = £ X p, because the func-

U d- -]

tion @r,p is continuous by (19) of § 2. In view of the compactness of the

sot X = U @7 wp (@) Ls rp Zwp(®s) following from the last inclusion,
nal
and in view of the contmulty of the function 7, we infer by Lemma 8.4

that Ls 7‘7’.‘)(1'(3’1;) =7 [ LH Prxn(®n)] =« *(F X p), whence, by (12),
n—oo

Ls rps . (2,) € 0X p, ie. hm wp_,x,,(crn) = 0 X p. The continuity of the

N—00

function rpj,, at the pmnt a in thus proved.

§ 9. Minimal sets

A pulverable set P with a dispersion point a will be called minimal
if every quasicomponent of P—(a) is a single point. It can be easily
proved that the pulverable G, set constructed by Knaster and Kuratow-
ski in [7] is minimal. Two years later Wilder [15] constructed & minimal
set and proved that it is minimal. Later on Knaster [9] constructed
minimal sets of any finite dimension. All these examples are effective.

As Roborts [13] has proved the set of rational points in Hilbert
gpaca is homeomorphic with a plane pulverized sat, which becomes a mi-
nimal set upon the addition of its dispersion point. Then the question
arises: doos ovoery pulverable set contain a minimal subset? (Enaster).
If the continunm hypothesis is true, the answer is negative; there existy
(seo Bxample 3, p. 41) a pulverable set such that every pulverized subset
of it contains 2% quasicomponents of power 2. Nevertheless, for every
pulverized sel we shall construct a compactification such that choosing
in a snitable manner one point from ocach component of this compactifi-
cation we obtain a plane pulverized set, which becomes & minimal set
upon the addition of its dispersion point. For this purpose we construct
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a compactification of P -~ (a) containing the set € X4 in such o way that
each two segments 7, X .# and t, X £ of this set, wheve 7 +7,, liein dif-
ferent components of this compactification.

Let P be any pulverable set, a its dispersion point and let I¥0 be
the set of all points (z,, @,,...) of the Hilbert cube such that =, = .
Since every set I%¥0 is homeomorphic with the Hilbert eube 7% wo can
agsume that P < I%e.

Let.
(1) ¢ = (0, &y, ay, ...),
and let g denotes a function g:P--(a)—. /% definad by tho formnla
(2) q(U,y By, by, .0.) = (Hj“ "L_'a Pyy gy . ..)
' n(a, q)

for ¢ = (0, 23, @3, ...)eP—(a), where g(a,q) is the distance botween
two points a and ¢. Of course,
(3) g is a homeomorphism on L£--(a).

LenyA 9.1. Let H be a non-void and closed-open subset of P--(a)
and T a segment —1 <2, <1 of m-awis. Then T X (ay, ta,...) c y(H).

Proof. Let p = (1), s, A3, ...)eT' X (04, @y, ...). We have fo find
a sequence of points

(4) Pn=(0,07,2%,...)eH, where n =1,2,...,
sach that p = lim g(p,), i.e. by (2), such that ([10], I, p. 86)
=00
(6) £y = lim gin — <
n—c0 Q(G,Pn)
(6) a — lim 2  for i=2,3,...
R—>00

Since @) e?', there exists an angle « such that —n/2 - a - /2 and

(7) 2, = sinu,

Denote by X, the sphere having « a8 a centre and u vadius aqual to
1/(a+2nr). Beginning with some 2, (we may assumne n, == 1) we have
K,~H #0 by connectivity of the set (a)w I (se0  Lomma 4.4).
Let p,<Il, ~ H be an arbitrary point of this intersection for » == 1 v 3y
To prove (5) and (6) for the sequence {Putucrs,.. note that wo have
e(a, pp) = 1/(¢+2nx) by the definition of the sphere K, .

Hence, firstly, we have 4 — lim p,, which implies (¢) Ly (1) and

n—nr0

(4), and §econdly, sin(l/g(a,p,,)} = §in(u42nn) = gina for n =1, 2, ...
whence sin(1/e(a, p,)) = », by (7), and therefore (5).
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-IJEM.R.[A 9.2, Ij' l:l l:-\' it ﬂl()-\’(ﬂd-(}‘,)('»”, '\"H-b-\'('f n‘f P___ (a'), th(m th/(f sel :q'(f')
is conneeled.

Proof. Firstly note that if (4 is non-void and closed-open subset
of g(H), then by (3) and Lemma 9.1

(8) T X (tay g, ...) c G.

Now if q(I_I ) = Mwv N, where M and N are non-void, closed and
disjoint, then we have equalities

(9) M~AgH) =M and N~gH) =N,

and therefure cach of the two sets M ~g(H) and N ~g(H) is a non-void
and & closed-open subset of g(H). In view of (8) and (9) we have then
inclusions T X (as, Gy,...) <« M and T X (a,, a3, ...) = N. This is in con-
tradiction with the assumption M ~ N = 0.

Hence g(H) is connected.

THEOREM 9.3. There exists a compaotifioation of the set P—(a) con-
taining (topologically) the set € X.F in such a way that each component of
this compactification contains exactly ome segment of this sel.

Proof. In view of (3) the set g[P—(a)) is homeomorphic with the
set P—(a). Let h denote the function defined on P—(a) by the formula

h(p) == pg(p)x g(p) for each peP—(a).

The function % is @ homeomorphism. Indeed, it is one-to-one, because
p #*q implies g(p) # g(q) by (3), whence ug(p)xg(p) #* vg(q)*xg(q),
i.e. h(p) # h(g). Furthermore, »g(p) being continuous as a superposition
of two funetions which are continuous, by (10) of §2 and by (3) the
function % is continuous too ([10], I, p. 86). Finally, lim A(z,) = h(w)

% —00

implies lim g(x,) == g(@) ([10], I, p. 86), and the latter is equivalent to

H—>00

lim 2, -= . 1Tencoe the inverse function 2! is also ¢ontinuous.
n

N—r00 )
Sinee 4 is a homeomorphism, A[P— (a)] is & compactification of the
#ot P— (a), and we have by (3) and Lemma 4.6

(10) »g[P—(a)] =%

And from the definition of h we infer that

h{P—(a)] < pg[P—(a)]1X g[P--(a)],
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and consequently that k[P—(a)] = {pg[P— (a)]X g[P— (a)]} ~ h[P—(a)],
i.e.

(11) AP—(a)i= U {rxglP—(a)]} ~h[P—(a)].
tepg[P— (1))

Let {Hp}lpe1s,. be for each re;/yg—y_[._?-;(d—)] a desconding sequence of
closed-open subsets of P—(a) such that

(12) wg(HY) is a closed-open subset of :p_(}.[:P—(a)] for » =1,2,.,,,

(13) (z) = ﬂl i (Hy).
R
We shall prove that

On the one¢ hand, let 7re() g(Hi). Then r = lim g(p,) for a
n=1 ¥ 7—»00
sequence of points p,eH, (n =1,2,...). Since vg(p,)epg(H,) for

n=1,2,... imply by virtue of (13) that lin yg(p,) = v, then

n->0

lim [pg(p,) X ¢(p,)] = vx7 ((10], I, p. 86), whenee ©x7eh[P—(a)].

Hence tx [\ g(H.)=h[P—(a)], and in view of the inclusion
N=l

g(H3) c"g [P—(a)] resulting by the hypothesix H; < P--(a) wo infer
that for veypg[P— (a)]

() e () p9(H3) = e 9T (@)1} ~ BEP— (@)

On the other hand, if X s eﬂP_— (a)], then there exists a sequence
of points g,eP—(a) such that zXxs = lim [yg(q,) X g(q,)]. In par-

n—00

ticular, = = lim yg(q,). It follows by (12) and (13) that for » ==1,2, ...

=00

there exists an index m, such that yg(q.)ewy(Hy) for each m = my,.
We may assume that m, = n, and therefore

(16) vo(ga)epg(Hy) for w=1,2,...

Since ¢(H), as o closed-open subset of g[P —(a)] by (3), is & union
o_f quasicomponents of g[P—(a)], we have, by the definition of the func-
tion v (see p. 8): y 'yg(H;) = g(HL) for n =1, 2, ..., and consequontly,
in view of y~'yg(q,) = v~ 'pg(H}) resulting from (16), g(¢,)eg(H3) for
n =:1,2,... Therefore =X g(g,)etx g(H}) for n -=1,2,... and finally
([101, I, p. 246) X qerx () g(H3).

n=]
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Thus we have also proved the inclusion inverse to (15) and there-
fore equation (14). It follows by (11) that

an MP—(@l= U [tx N 3@

wpg[P—(a)) n=l

Since Hp,, = H; for each teyg[P—(a)] and » = 1,2,... by hypo-

thesis, 50 by Lemma 9.2 each set () g(H7) is @ continuum ([10], IT, p. 110).

=1

It follows by (10) that all members of the union (17) are components of
the set A[P— (a)].

And since H7, is by hypothesis closed-open subiet of P—(a) for each
veyg[P—(a)] and n =1,2,..., wo have by Loemma 9.2 the inclusion
Tx(ay, ay,...) < ;(T;) for each reyg[P—(a)) and » = 1,2, ..., whence

T X (ay, @,...) = (g(H;), and consequently
n=1

(18) U [exXTx(ag,05,-.01c U [ex () 9(@E].

wepg(P—(a)] 1epy[P—(a)] n=1

But U [rxTx(agyas,...)] =¢%xX# by (10) and each set
w90 [P=(@)] top

X () g(H}) is a component of fz[P—(a)], hence by (18) each segment

Tiam]

TX T X (thsy @y, ...) lies in the component X (1) g(H}) of the set [P —(a)]

Nex]

o0 J—
and cach component X (1) g(Hy) of the set A[P—(a)] contains the

Tl
segment tX71' X (ay, a5, ...).

COROLLARY 9.4. The compactification of the set P—(a) constructed
in Theorem 9.3 contains a pulverized set meeting each component of this
compactification in exacily one point, i.e. such that upon the addition of
its dispersion point it becomes a plane minimal sei.

Indeed, the seti @ X contains a pulverized set [9] meeting each seg-
ment 7x.# in exactly one point.

§ 10. Pulverability and o-connectivity

We now deal with connexions between the nofion of pulverable

and that of e-comneeted sets.

A set X is called o-connecled if there is no decomnposition of
it into a sequenee of non-void, disjoint and closed in X subsets
(see Lelek [11)]).
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Lelek [11] has proved that the set constructed in exwmple « of the
paper [6] is o-connected, and he posred the problem: ix every biconnected
set o-connected? ([11], P4, p. 267). The answer is negative oven for pul-
verable sets. Namely

ToncoREM 10.1. There crist pulverable o-connccled sets wnd  pulver-
able not a-connected sets of any finite and infinite dimension.

A construction of pulverable g-conneeted sots B, of any finite dimen-
gion n is desecribed in Bxample 4 (p. 40), and a construetion of pulverable
but not o-connected sets B, of any finite dimension » is deseribed in
BExample 5 (p.50). Applying Oorollary 6.2 to Che famillew {B,},..,
and {By},.1,,.. We obtain pulverable sets B, and B, of dimension oo,
the firgt of which is g-connected and the second in not, The congtituents
of o-decomposition of the set B, are: its dispersion point «,, and all the
constituents of o-decompositions of the sets B;.

Since no pulverable set contains & ¢ontinunm ({61, th. X1V, p. 2146),
Theorem 10.1 implies the following

COROLLARY 10.2. For any dimension n = 1,2,.., oo there exists n-
dimensional and a-connected sel oonlaining no eonlinuum.



CHAPTER IV

§ 11. Two lemmas on decompositions

Both lemmas are intended for the construction of Example 3 (p. 41).
We shall use in their proofs (but nowhere else) the continuum hypothe-
gis.

Let J be the segment 0 < £ < 1 and let 2 be the smallest uncountable
ordinal number. ‘

LeEmMMA 11.1. There exists a decomposition # = | R, such that thé

IR

scts R, are disjoint, of power 280, dispersed, and perfeot.

Proof. Let f be a function traneforming the segment ./ onto. .f*
in such a way that the image under it of any subsegment J of # such
that

(1) J=lw:——$1:<—-————}, where % =90,1,...,9"-1,

is u solid square, the sides of which are parallel to the sides of #*. Such
a tunction exists; for instance, see [14]. Let {,},.o be a sequence of all
points of the segiment #. We show that the set R, defined by the formu-
la R, = f~'(2,x) bas announced properties. In fact, we have z, + =,
for o #0', whenee (z,XS)~ (@,XF) =0. Therefore f'[(z,Xf)n
~(@y, X )] =N, x F)~f (2, XF) = R,~R, = 0, i.e. each two dis-
tinet sets of the docomposition are disjoint. Since the funetion f is
a one-to-one function bosides of & countable set of points, and sinco the
sots x, X S arc of power 2%, then the sets I, are of the same power. Since,
by hiypothosis, the image of every subsegment of # contains a solid aquare,
and the set #,X # is a segment, i.e. does not contain any square, then
f Y=z, x #) contains no sogment. Ience the sets B, are dispersed. Finally,
every R, is a perfect sct. Indeod, for each point pe R, = Yz, x#) and
for each n =1, 2, ... thore oxists & segment J of shape (1) containing p.
It follows that f(J) ~ (z,xX#)—f(p) # 0, whence J ~ R, —(p) # 0. Thus
p is a clustor point of tho set R,. This set is then dense in itsclf. The set
T,x J is closed and the function f is continuous; thus the set R, is
closed too. Being closed and dense in itself it is a perfect sot.

Rozprawy Matematyczne XXXVII a
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LummA 11.2. There exists a decomposition % = |J . such that
1780

the sets Cg arc disjoint, countable and dense in %.

Proof. Let {I't}r_,.. Dbe the basis of ¢ consisting of open sets.
Choosing one point from each of these sets and denoting tho set of such
selected points by C; we obtain a countable sefi which is densc in 2.

Using now the transfinite induction we shall dofine the sefi € for
a << £ with the aid of sets C; disjoint, countable and donse in €, whore
£z q. In view of a < Q the set | C; is countabloe. Then the ety I —{J C;

é<a f<a
are of power 28 for each & = 1,2, ... Choosing one point from oeach of

the latter sets and denoting the set of sueh selectod points by €, we obtain
a set C., disjoint with each C;, where ¢ < a, vountable and dense in %.
Thus we have defined a family of 2% sets Oy, disjoint, countablo and

dense in ¥. Ordering the points of the set ¥ — {J O in a finite or trans-
1:5¢<2

finite sequence ¢, ¢y, ...y gy ... Put 0 = Cpv (¢;) if the puint ¢, exists,
and C; = C; in the contrary case. The sets C; are henceforth disjeint and
have all other annonnced properties.

§ 12. Examples

ExamPLi 1. A pulverized set P—(a) consisting of N, quasicompo-
nents not one of which is nowhere dense in P.

We shall use in the construction the exainple « from paper [6] (pp.
241-244) of a pulverable set § having (1/2, 1/2) as a dispersion point and
lying in the Cantor fan .

First of all in a solid square £ of the plane Ozy having the opposite
vertices (0, 0) and (2, 2) we define two auxiliary sets M, and M,. For
this purpose let C; be the left half of the Cantor set %, i.c. lying in the
segment 0 <<z < 1/3, and €, — its right half, i.e. lying in the segment
23 <z < 1. Furthermore, let Ly(2) be the polygonal line with vertices

ar 1+ 62 1462
) and (2, :

2), (———m— . il ~Tr
(%, 2) 1732

5(1 37) . ), and. Ly(x) - the polygonal

¥4 — 2 R .. = 24 ; -
line with vertices (4. 2), (lba, . 122 8) and (2. 13.1__8_) Put:
) AV 624+9 0 G249 Gx--9
(1) .']'In B U ]J'('(T). '}]1] = U L] (T), W = (‘i, 2
ﬂ‘cn Y‘C]

(see Figs. 3 and 4). Tt is easily seen that fov j, i —= 0,1
(2) Lo(to) ~ Ly(ty) - (@) # 0 for each  ryc%, und T, e% ),

(3) Li(t)~ M --(a) =% for cach re®; and § -~ j}".
tan
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(4) M;—(a) is not counected between any pair of polygonal lines
Li(z") and L;(z"'), where 7' # 7" and ', 7" %;.

Obviously, the sets M, and M, are both homeomorphic with .,
and so they contain the pulverable sets 8, ¢ M, and 8; c A, with the
game dispersion point «. For eaeh 7%, the counter-image of L,(7) ir
the set L(3z), and of L,(tr) the set L(37—2). Since each segment L(t)
containg a guasicomponent: of the set §—(1/2,1/2) and this set is dense
in L(x),

() every polygomal line IL;(z), where te%;, contains a depse in it
quasicomponent. of the set §;—(a).
Let us add to each of sets 8, and S, the set M,~ M,. Then the ref
(6) P; = 8~ My~ M, iz pulverable, and a is its dispersion point.
In fact, by evident inclusions 8; ¢ P; c M; and by the equality
S, M;, which follows from (5), the set P; is connected ([10], II, p. 83).

/ Yy

)tv

ig. 3. The sei A, Iig. 4. The set A,

By virtue of the definition of pulverable set (see p.3) it remains
to prove that « is a dispersion point of both sets Py, i.e. that each quasi-
component of P;--(a) is n dispersed set. For this purpose we first show
that
(7)  avery quasicomponent of the set £;--(a) ix dense in the polygonal

line in which it lies.

By the inclusion ;- -(a) = Py () every quasicomponent of the set
P, —(a) contains a quasicomponent of the set §;—(a), and by the inelu-
sion P;—(a) € M;— (&) and (4) every quasicomponent of the set P;—(a)
is contained in some polygonal line L;(r), where re(?;. Tn view of the
above two premises and (5) we get (7).

Now let @ be a ¢masicomponent of the set P; (e). In virtue
of (7) Q is a dense subset of the set I;(7)--(a) for some 7e(;, whence
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Q = P;~ L;j(7)—(a). By the definition of P; and by (1) we have then @ =
Py~ Ly () — (@) = (8 o My M) ~ Ly (v) — (@) = 8 ~ Ly () v Ly (v) ~ My — (@),
where j 5£j, ie. @ = [8n Li(z)—(a)]v [Ly(7) ~» Myp—(a)].

In virtue of (5) the first member of this union is a quasicomponent
of the pulverized set §;,— (a) and, by Lemma 4.2, it is a dispersed set,
And by (3) the second member is a closed and dispersed set. Therefore,
the union of these sets is a dispersed sel, because overy dispersed subset
of polygonal line is » boundary set, and the union of boundary and no-
where denge sets is & boundary set ([10], I, p. 37). (6) in thus proved.

Now wc show that '

(8) for each quasicomponent @ of the set P;—(a) and for each 7’0,
where j #j', we have @ ~L;(z") #0.
Indeed, we have by (7)

(9) Q = P;~nLjr)—(a) for some 1¢Cy,
whenee Q < L,(r)—(a). For any t'eCj, where j #j', wo have then
(10) Q@ ~ Ly (7')— (a) € Ly(7) ~ Lyp(7')—(a).

Since L;(7) » Ly(v')—(a) € My~ M,—(a) by (1), it follows by (6)
that IL;(z) ~ Ly (') —(a) € My~ M,—(a), whence by (9) we have
Li(t) ~ L. (7)) — (a) € Q. Thus L;(7) ~ Ly (z')—(a) = @ ~ Ly.(7") — (a), which

implies by inclusion (10) that @ ~ L; (z')—

z4 —(a) = L;(t) ~» Ly(z')— (). From this

equality and (2) follows at once (8).

The solid square K is a parallel to

— the z-axis projection of the union

R(p,q) of two rectangles R,(p) and

/lﬁ’.(p) ] R,(p, q) defined for each pair p,q of

; / points of the z-axis as follows: R,(p) has

vertices (0, 2, 0), (1,2,0), (1,0,p) and

> (0,0,p), and R,(p, q) vertices (1, 2, 0),

2,209, (1,0,p) and (2,0,p+9).

Yig. b Thus for each p 3 0 the rectangle R, (p)

has exactly one gide in common with the

square K, namely the side J with end points (0, 2, 0) and (1, 2, 0), being

the left half of the upper side of the square K, and for each ¢ # 0 the

rectangle R,(p, ¢) has exactly one vertex in common with the square X,

namely the middle point (1, 2, 0) of the upper side of K, and it has the

whole side of ends (1, 2,0) and (1,0, p) in common with the rectangle
R,(p) (sec Tig. 5).

Let Z denote henceforth the z-axis, 7' the interval 0 <z -< 1 of Z,
and W the sct of rational points of Z. Put Wy = WAT and W, = W ~ T,
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where W' is the set W translated under irrational number. Hence W.,

= = W1 = Wou W, and Wy~ W, = 0. Let € be the Cantor set lying
in the interval 7. The set of numbers W, W, ordered according to their
magnitude is then similar to the isolated set M of middle points of com-
plementary intervals of € to the interval 7. Let f be this similarity:
.'f(p)e M for pe W, wW,. _

For pe Wy W, denote by P;(p) the parallel to z-axis projection of
the pulverable set P; onto E[p, f(p)], and by N,(z, p) the similar projec-
tion of the polygonal line IL,(r) onto the same set. Thus

(11) Py(p) is  homeomorph of P;, and aeP;(p),

(12) Pi(p)—(a) = R[p, f(p)]—J;

subsequently by (7)

(13) every quasicomponent ¢ of P;(p)—(a) is dense in the polygonal
line N;(r, p) in which it liex,

and finally by (8)

(14) for each quasicomponent @ of P;(p)— (a) and for each 7'eCy,
where j # j', we have @ ~ N;.(z', p) # 0.

We deduce from (13) and (14) that

(16)  for each quasicomponent @ of P;(p)—(a) and for each guasicom-
ponent @, of P;(p,) —(a), where j #j, limp, = p implies
Q@ Ls @, #0. n—mo

N—>00

In fact, it follows from (13) that
(16) @, = N; (1, ps) for each n =1,2,... and some 1,¢0;.

Since the sequence of compact sets {@,}n.. ... contains a convergent
subsequence {@, }n_1z,.. ([10], II, p.21), limp, = p implies Lim @,
n—00

—00

= Nu(zr,p) for some zeC;.
Sinca Lim Q,,l 2= Lnn Q,,,, ([10], T, p. 245, formula 1), we conclude

N—rmo
by (14) that @ ~ Lim an
n—>00
Now we ean define the set P. Namely, put
(17) P = U Py(p)v U Pi(q).

net¥ g neW)
Ifirst. we show that
(18)  the set P—(a) is not connected between any pair of its subsets
P;(p)— (a) and P;.(q)— (a), where p <W;, qeW;., p < q,and j <j'.
Indoed, since tho function f is a similarity between W, W, and M,
there exist two points: 4 —(Wow W) and r,eZ — M, such that p <7, < ¢
and f(p) < 7, << f(q); moreover, for each pair of points p, ge Wy W, the
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relation p < ¢ is equivalent to the relation f(p) << Flg). In other words,
the set R(r,, ry) is disjoint with R[s, f(8)]—+ for exch se W, W, und lies
between R[p,f(p)]—J and R[g,f(g)]—d, if between is taken to mean
that the union of two half-planes having the conmnmon  segment
R,(r) ~ By(ry,75), the first of which contains £;(r,) wnd the second
Ry(r1, 15), disconnects the space B* between R[p, f(p)]--7/ and Ii[q, f(q)]
--J. We have then (18) by (12).
Moreovcer, sinee M is isolated,
(19) the set P;(p) is not nowhere dense in L.
Now let H be an arbitrary open set in P---a containing s guasicom-
ponent @ of its subset P;(p)— (a). Then
(20) there exists an interval @ of z-axis 7 containing the point p and
suoch that for each qge W; ~ @, where j # j', the sot H has cormnon
points with any quasicomponent of P, (q)—(a).
For supposing the conirary, i.e. that for cach interval G of z-axis
Z such that pe@ there is a point ge Wy ~n@ (j # j') such that for some
quasicomponent @ of P;(¢)—(a) we have @ ~ I = 0, we can take a so-

quence of intervals @, such that pe J G, and §(@,) < 1/n, and conse-

Nl
quently we can choose a point q,eW;~@G, and a quasicomponont @,
of P;(q)— (a) such that

(21) HAnQ,=0 for =—=1,2,...
Wo infer from (16) that @ ~ Ls @, # 0. But it is itupossible in view

nN—00

of (21), because the set [ is open and contains @.

In particular, if & is simultaneously closed and open in P --(a),
then

(22)  there exists on z-axis an interval ¢ containing the point » and
such that for each qe W; ~ @, wherej # j', we have Py (g)— (a) cH.

In fact, since P;(q)—(a) = P—(a), tho sot H is also closed-open in
P;(q)—(a), and has by (20) common points with each quasicomponent
of P;(q)—(a), where geW; ~@ and j #j’, must contain it. Finally
(23)  each of sets P;(p)— (a), where peW;, is a quasicomponent of the

set P—(a).

By (18) each of quasicomponents of the set P—(a) is contained in
Py(p)—(a) for some pe W,;. In order to prove the converse, i.c. thai
each sot P;(p)—(a) is contained in some quasicomponent of P—(a),
we first show that the set P— (a) is connected between each pair of points
b, and b, of the set P;(p) — (a). For this purpose let @, and @, be two quasi-
components of Py(p)—(a) such that b;eQ, and D,eQ,, lot H, bo a set
closed-open in P—(a) and containing @, and similarly lot H, be o set



§ 12. Kxumples 39

closed-open in P—(a) and containing ¢,. Thus for each of the two pairs
Hpny Qumy, where m =1 and 2, the z-axis contains an interval @, fulfil-
ling (22). Since the set W, is, by hypothesis, dense, W; ~G;~G, # 0,
whence '

Hi~nHy > { U [Be@d—(@)}~{ U [Pr(g)—(a)]}

qE]‘Vj: r\Gl ﬂ!le r\“g

= U [Pr(g)—(a)] #0.
2173 Gy Gy

It follows by b,, e H,, and in view of the free choice of sots H,, closed-
open in P--(a) that the set P—(a) is connected between b, and b,.

Now we can prove the properties of the set P.

First of all, the set P is pulverable and a is its dispersion point.
lndeed, since, by (11), vach subsel P;(p) of P is connected, and each two
subsets of P have the common point a, the union P of all these subsets
of P is also connected ([10], IT, p. 82). The point a is its dispersion point,
because each subset P,(p)— (a) of P is dispersed, by (11), whence it fol-
lows by (18) that the set P — (a) is also dispersed.

Thus set P— (a) is pulverized.

The countability of the set W,w W, and (23) imply at once that
the get P— (a) has R, quasicomponents.

Finally, by (19) and (23), ecach quasicomponent of P—(a) is not
nowhere dense in P-—(a).

ExamrLe 2. A pulverized set P'—(a) consisting of N, gquasicompo-
nents each of which is nowhere dense in P'(°).

The sot P wilt be obtained from the set P defined in Example 1 by
a continuous transformation g such that for each pe W;, wherej =0or1,

(1) g[P;(p)—(a)] is a quasicomponent of g[P— (a)],
(2) g[P;j(p)—(a)] is nowhere densec in g[P—(a)],
(3) g(P) is pulverable and ¢ is its dispersion point,
(4) ¢g[P—(a)] consists of ¥, guasicomponents.
For this purpose define ¢ on the set |J R[p,f(p)] containing

piWo\le
P ag a function changing each set R[p, f(p)] containing the quasicom-
ponent P;(p)—(a) of P—(a), where pe W;, into its projection parallel
to z-axis, namely into the rvectangle R(p, 0):

gy{R[p,f(p)]} = E(p,0).

In other words, wo straighten cach right rectangle R,[p, f(p)] and
we putb it on the protraction of the left one. Since the set defining the

'(‘5)- 'I‘]m axistenco of such a pulverable set was ostablished in the proof of The-
orem 7.4 (p. 20). Ilere an individual geometric example will be constructed by a simple
modifiention of VFxample 1.
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family of right rectangles is isolated, the function g, being continuoua
on each of these rectangles, is also continuous ov their union. Conse-

quently
(8) Y[P—(@)] = g(P)- (a).

The images R(p, 0) or R[p,f(p)] have now in common the whole
edge of the ends (0,2, 0) and (2, 2, 0). Donote this edge by K. Then for
all pe W,

(8) g[Py(p)—al = R(p, 0)—F,
(7) ¢[Py(p)— ()] is homeomorphic with L£;(p)--(a).

Since the set Wy W, defining the union of the left sidos R (p) is
dense in T, on account of which each one is a boundary sef in thoir union,
we now have the same for the right sides, i.c.

(8) g[P;(p)—(a)] is & boundary set in y[P-(a)].

At the same time, it is easy to prove, in a way analogous to that
in the proof of property (17) of Example 1, that the set ¢[P—(a)] is not
connected betwoon any pair of its subsets g[P;(p)—(a)], ¢[Py(q)—(a)],
where pe W;, ge Wy, p #¢ and j <j. Namely the plane contain-
ing R(r,,0) disconnects &° between each pair of sets R(p,0)—F and
R(q,0)—F, where p <7, < ¢; counsequently it disconnects the space
& between g[P,;(p)—(a)] and g[P;(g)—(a)] in virtue of (6).

Therefore the set |J R(p,0)=g{ U R[p,f(p)]} ix & union
. peW o W peW o Iy
of a countable family of reotangles R(p, 0) continuous along the edge E
and disjoint beyond it, and the set g[P—(a)] is not connected between
any pair of sets g[P;(p)—(a)] and g[P;(¢)—(a)], where p #q and
j <§'y ie. any two points p’eg[P;(p)—(a)] and ¢ eg[Ps(g)—(a)] be-
long to different quasicomponents of g[P—(a)]. In other words, the con-
tinuous function g has the following property: if two points @ and ¥y belong
to different quasicomponents of the set P—(a), then their images p’
= g(») and g = g(y) belong to different quasicomponents of g[P—(a)].
The inverse implication occurs too: if two points 2 and y Delong fio one
quasicomponent P;(p)— (a) of P—(a), then their images g(x) and g(y)
belong to one quasicomponent of the set ¢[P— (a)]. For any continnous
funetion has the following property: the image of any quasicomponoent
is always contained in some quasicomponent of the image. The above
equivalence implies (1), whence (4) follows in view of countability of
the set W, W, running over by p. Property (2) follows then by (8) and
(1), bocause every quasicomponent is a eclosed set ([10], 1T, p. 93).

Finally, each of the sets P;(p)— (a) is disporeod being u quasicom-
ponent of the pulverized set P— (a). Thur, by (7), the ret ¢[P)(p)-—(a)]
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is dispersed and, consequently, the set g[P— (a)] is by (1) dispersed too.
Since the set P is connected and the fumnction ¢ is continuous, the set
g(P) is connected. Hence by (5) the point ¢ is its dispersion point, and
therefore we have (3) by Lemma 3.1.

All the properties (1)-(4) of the set g(P) are thus proved and it re:
mains to denote this set by P’.

ExAMPLE 3. A pulverable plane set P’ such that every subset B of
P" —(a) whioh has a dimension 1 in all poinis save a nowhere dense subset
(which may be void) conlains 280 quasicomponents of power 280, In particular,
every pulverized subset of P"' contains 280 guiasicomponents of power 280 (7).

We shall define P” in the Cantor fan .# by chooging some subset of
each segment L(7). We shall use the continunm hypothesis in this ¢on-

struction.

Lot us take the decomposition | J) R, of the segment 0 <y <1/2
1<o<2

of y-axis into 2% digjoint, dispersed, and perfect sets, each of which is
of powor 2% (such a decomposition exists by Lemma 10.1), and the

decomposition of the Cantor set ¥ = |J C, into 2% disjoint, countable
I<é<n

subsets dense in 7 (such a decomposition exists by Lemma 10.2). Obviously,
we have for each 7%
(1) L(t) = U L(x)~{IxR,), ‘

1<o< 12

where the members of the unnion are disjoint and non-void. Now let us
order in a transfinite sequence D, D,,..., D, ..., where ¢ < 2, all
sets (we may confine ourselves to closed sets only, see [10], II, p. 97)
disconnecting plane between some two points of the Cantor fan . and
not containing the point ¢ = (1/2, 1/2). It is easily seen that each of them
must disconnect segments L(r) for some open and hence closed-open set
A4 of points r¢%. Bach of C; is dense in %; thus

(2) AnCe #0 forall §¢<Q.
Let a; De the first index such that
D,~TU L(z)]~n (IXR,) #0.

t(ol
Put. ¥, = ¢, and W, = R, . Suppose that for each 5 <a

(3) Dy~ U ATU L0~ (IX W)} # 0,

Na eV ]
(4) V,= W, =0,00V, = ('"-‘,, and W, = R,,” for some £, < Q and o, < 2,

Y

(?) Originally Example 3 was constructed in consideration of the property of
its pulverized snbsets formulated above. I an indebted to A. Lelek for calling my
attention to the more general property of this example,
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and that for cach p <« and p' < a the inequality f »~ ;7 implies the
equalities

(5) .Vli ) Vﬂ' = " .
(6) 1V‘r| m Wﬂv =),

In order to define now the sets V, and W,, consider the two follow-
ing cases:
(1) Doy ULIYLDI A U Wl 05

f<a 34 B
in this case put V, == W, =

(11) D,~UJ {[L%L(T” I x Wyt 0

iz 16 [
in this case lot C; be the first set that ditfers from every V,dor § « «
and at the same time such that

(7) D,~{ U L(7) “U (Ix Wy} + 0,

1,'6 ea ‘ll
and let R, be the first sot that differs from every W, for # < « and such
that

(8) DonLU LD~ (IXR,) + 0.
™0,
Put V,=0C; and W,=E,.
It is easy to verify the properties (3)-(6) for «+ 1 ingtead of «.
Also observe that (7) implies (8). In fact, for 7¢C,, we have D,~ L(7)--
— U (IXW,) # 0. In virtue of (4) and (1) there exist indexes o, differ-

f<a
ent from o,, where » < «, and such that D,~L(r)~(IXR,) #0.
It remains to prove the existence of indexes &, fulfilling (7). I‘m‘ this
purpose it is sufficient, by (4), to show that

() Dund U D= U X W) 40,

<a
ﬂ<a /

Let 1 bhe a eloged-open subset of %, sueh thai
(10) Dy~ L(r) 20 for cach 7161,

BEach of the sets D, ~ [ L(z)] ~ (I x Wp) is compact being w common

€l
part of compacet sets. Let Ag be a projection of sueh a set: from the point
a onto the y-axis, i.c.

(11) Ap = {rire D, ~ Lit)~ (] = W, o,
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The set A, is the compact too ([10], [1, p. 11). Now, supposing that
(9) is not true, i.e. that

Do~ U Lim)le U x Wy,

wé— U l'p fza
p<a
we have, by (10) and (11), 4 = A, /4~ |J V4, where the set V),
p<a f<n B<a

is at most countable by the countability of the sets C, and by (4). Then

the compact set 4 is a union of an at most conntable set 4 ~ (J V, and
(J<a

of a sequence of closed sets A,. Baire category theorem ([10], I, p. 320)
ensures that one of the latter sets, which is denoted by 4,, contains
a subset B denge in a closed-open A’ < 4 subset of the Oa,ntor set &.
Therefore we have (2) for 4’ instead of 4. Thus B = A’, whence

(12) A< Ay,

because the set 4, is closed.
As satisfying (2), each of the sets A’ N O, = A"~ V, is non-void.
Liet then

(13) Ted ~Vpy

Therefors, by (12), we have red, , whence D, ~ L(t) ~ (L X Wg) 5= 0
in view of (11), but it is in contradiction with (II) by virtue of (13).

The proof of (9) is thus complete and thereby the inductive defini-
tion of transfinite sequences {V.}oco and {Wi}aco satisfying conditions
(3)-(6) for each a < £ and each 7 < a is finighed.

Now we can define the set P by fhe formula

14 P = (@) U (I L@~ X T
f<Q 1V

W begin with the proof of the fn'st property of the set P/, namely
that the set P’' is pulverable and that a is its dispersion point.

For this purpose first note that the set P’ — (a) is dispersed. In fact,
every set L(z) ~ P —(a) is, by (b) and (14), either void or equal to L(z) ~n

~ (S X Wg). The last sot is dispersed by (4) and by the hy‘pothesis that
the sets R, are dispersed. Moreover, for each pair of points of P’ lying
in two differents segments of the Cantor fan .#, there exists in the plane
» straight line having ouly @ as a eommon point with P”, and discon-
necting the plane between the points of this pair.

In view of the definition of pulverable set (see p.3) it remains to
prove that the set P’ is connected. For this purpose we show that every
closed set D disconnecting the plane between some two points of P
has common points with P”. If aeD, then aeD ~P"’, hocanse geP”
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by (14). And if aes/ —D, then D = D, for some 7 < 2, because in view
of the inclugion P’ c .# the set D dlsconue(,ts also the Cantor fan ..
In this case n < a implies (3), whence we have by (14) the inequality
DAP'" #0 too.

Now we prove the second property of the set P, that is that
every subset B of P’ — (a) which has dimension 1 in all points (Rave a no-
where dense subset which may be void) contains 2% quasicomponents of
power 2%,

We see that

(16) fr:te%, L(t) (I X2) P £0}c V,

for each ze W,, Indeed, supposing the contrary, we must have zeV,,
where # # f, for some point peL(t) ~ (F X 2) ~P", whence we infer by
the relation peP’’, (5), and (14), that peL(z) ~(F X Wy). Therefore it
follows from zeW, that peL(z) ~ (L X Wy)~ (FXWy) in spite of the
equality (F X Wy) n(F X Wy) = F X Wy ~n Wy = 0 which follows from (6)
by the supposition g # . Hence zeV,.

Note also that
(16) if Y is an open interval contained in the segment 0 <y <1/2

of y-axis, then there cxists 2% sets W, each of which containg 2ke
points of the interval Y.

Indeed, since Y is open, there exists a point peP’” the ordinate of
which is less than any number of Y. Now, if y,¢ Y ~ R, for some o < 2,
then the segment .# Xy, disconnects the square #? Letween the points
peP” and aeP”, and therefore, P'' is connocted as just proved, we have
(F X 4) ~P"” # 0. It implies by definition (14) the existence of an index
B < 2 such that L(z) ~ (S Xy,)~P" # 0 for some vV, whence y,¢W,
in view of (14) and (5). But the inequality R, ~ W, 5 0 implies, by (4),
the equality R, = W,. Since the sets R, are nowhere dense, overy set
W, is also nowhere dense by (4) and then the Baire category theorem
([10], I, p. 320) ensures the existence of 280 gets W » having common points
with the interval Y. Each set R, is perfect, so by (4) each sat W~ Y iR
of power 2%, Thus we have proved (16).

Now let B be a subset of P'' such that dim, 8 = 1 for some peB.
Then
(17) for any neighbourhood (in ) U of p ihere exist 2% points re%

such that L(t) » B~ U is of power 28,

In fact, let us choice a sequence {¥,},_,, _of open intervals of y-axi

and & sequence {4},_,, = of closed-open subsets of the Cantor set %
guch that putting

(/" = ('ﬁ x ]7'".) m~ U L(T)

TEA,
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we have for n =1,2, ...
(18) pelU,c U,

(19) 3(Up) < 1/n.

If we suppose that (17) is not true, then by (18)

(20) there exists an at most countable set of points 7¢% for which
L(z}~n B~ U, is of power 2% (o =1,2,...).

The set X,,— (yp), where y,, is the ordinate of P, is the union of open
and disjoint intervals ¥} and Y2. And since to each W, corresponds by
(4) in a one-to-on¢ manner the set V, =0, to for n =1,2,... and ¢ =
1, 2 thero exists by (20) a set V, such that W, ~ ¥} is of power 2o
a.nd such that for each reVﬂ the sct L{(t)nBA U, is at most of
power R,. It follows by the countability of the sct V , that for some
point dpeW; ~ Y. the segment £ xdi, is disjoint "with the set

U L(z)~ B~ U,, whence (FXd,)~B~U,=0 by (15). Choosing
uV'p'
now for n — 1,2,... two points b,,biesf—% such that bl < 7, < b}
and bybi~ % < A,, where 10¢¥, peL(7,) and bybi is a segment of
ends by, and by, we easily see that the qua.dmugle Q,,, vertices of which
are common points of segments # x d, and L(b)) (i, =1, 2), satisfies
conditions peQ, < U, and Fr(Q,)~B~ U, =0 for every n =1, 2,
Then B~ @, is a closed-open subset of B, contains p, and the dlameter
of B~@Q, is, by (19), less than 1/n (» =1,2,...). Hence dim, B = 0,
contrary to hypothesis.

Thus we have proved (17).

The spaces .# —(a) and (¥ X f)— (¥ X ¢), where ¢ is one of the ends
of #, are topologically equivalent, of course. Hence the second property
of the set P’ formulated above is a simple consequence of (17) and The-
orem J3.6.

EXAMPLE 4. A pulverable and o-connected set P, of any finite dimen-
sion n=1,2,...

Lot notation ¢ = Pu @, L(r) and § mean the same as in paper [6]
(see [6], example a«, Pp. 241-244). Namely, P = ¥ is the set of end-points
of intervals of #—%, Q = ¥—P, L(r) is a segment joining the point
a, = (1/2,1/2) to the point ref, and 8§ = # is a pulverable set con-
sisting of all points of L(r) with rational ordinate if reP, and irra-
tional ordinate if zeQ).

The construetion of P, will be induetive and basced upon the following
proporty of 8:

(1)  for every countable set B = @ the set S~ gL-JBL(T) is pulverable

with dispersion point a, and at the same time this set is o-connected.
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The set ¢ ~B is I'—F, = (/5. We may then apply to it the Baire

category theorem. Therefore the proofs that &~ U)L(t) is pulverable
-1

and o-connected are quite similar to those that the set N is pulverable
([6], pp- 241-244) and o-connected ([11], pp. 274 -276); it is sufficient to
substitute ¥ —B for € and @ —B for @.

Now let B be a fixed countable subset of ¢, deuse in €. Donote by
fy(@) the scalariforme function which maps the Cantor set %, lying ou
the segment with end-points (y/2, y) and ((1—¥)/2,y) onto this segment
(101, I, p. 236). Therefore the function F(z,y) defined by the formula

P(z,y) = (fy(2),y) for (z,y)eH

sticks segments L(r;) and L(r,) of Cantor fau .# which have lower end
points 7; and r, bolonging to % and bounding an interval contained
in /—¢. Hence F(z,y) is a continuous function mapping the Cantor
fan 4 onto the triangle of base # and vertex a,. Let 7? be this triangle.
Notice the properties of the funetion F(z, i) resulting from its definition:

(2) F(w,y) is continuous on .,
(3) PF(z,y) is a homeomorphism on each L(r).
(4) F[L(x)] = L[F(x,0)] for each 1%,
(5) the set F(B, 0) is dense in .7,
(6) if z; and v, are end-points of an interval of # complementary to

the Oantor set €, then

FIS ~nL(r)—(a)] = F[8 ~ L(7)--(4)],

[L(z)— (@)~ [L(m) —(ay)] it Tel(P,0),
L(z")—(ay) if TeF(Q,0),
where 7; und 7, are the end points of the same complementary
interval of Z to #, and ' Q.

We show that the set
(8) P = F[8~ U L(1)]

reW—I

(1) FHL(r)=(a)] =

has the following properties:

(9) P, is dense in the triangle 7°

(10) P, is pulverable and a, is its dispersion point,
(11) P, is o-connected,

(12) dim P, =1.

Indeed, P, < (E’JBL[F(r,U)] by (8) and (4), i.u.
(13) Pre U L),

1wy — F'(I20)
‘whence we have (9) by the conntability of the set & (B,0).
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In view of (1), (2), and (8), the set P, is connected ([10], I1, p. 30).
Thus to prove that it is pulverable it is sufficient, in view of the definition
of pulverable set (see p. 3), to show that a, is the dispersion point of P,,
i.e. that the set P,— (a;) ix dispersed. Applying succesively (8) and (7)
we have

PP A L) - () FUP) A~ F L)~ (@)]
|8 Lm) = (@) [§ A Lin)-(@)] i reF(P,0),
S~ Lt (a,) it 7e/(Q,0),
whence by virtne of (6)
IS ~L(ty)—(ay)] it el (P,0),

) P L) () = -
(14) O = Pl a @) - @) i reP(@, 0,

where z; and 7, are the end points of the same interval of # —%. Since

both sets appearing in brackets in formula (14) are dispersed by Lemma

4.2 as guasicomponents of the pulverized set S--(a,), the set Py~ L(7) -
(@), by (3) and (14), is also dispersed for each resf —F(B, 0).

We have P)--(¢;) = U Py~ L(r)~(%) by (13). In order to
¥ — F(B,0)

prove (10) it remains to show that the set P,—(a,) is not connected
between any two points p eP, n L(t)—(a,) and qeP, ~ L(7')— (a,), where
7 <7'. In fact, there exists by (5) a point be (B, 0) such that = < b < ’.
Consequently, the siraight line containing the segment L(b) disconnects
the plane between p and ¢, and by (13) it is disjoint with P,—(a,).
Hence the property (10) is proved.

The property (11) follows from (1) and (2) ([11], T 1, p. 266).

The property (12) follows from two premises: firstly, the set Py,
as » connected one, has a positive dimension ([10], IT, p. 80), and secondly,
the set UB L(7), which contains the set P, by (13), is at most 1-dimen-

1ef—~I'(B,0
sional, as a.(bo)nndary set in the triangle 1* by (5) ([10], II, p. 353).

Thus we have proved all the properties (9)-(12) of P,. Before defin-
ing now the sets P, for n > 1 we construct some auxiliary sets in £+,

Lot a, (1/2,1/2,...,1/2)eE"". Denote by 17, where pe.#, the
least convex set containing the base p X .#" ' and the vertex a,, and
by T™%! the least convex set containing the base .#™ and the same vertex.
So T3 is the triangle in &° with vertices (,0,0), (p,1,0), and a, ==
(1/2,1/2, 1/2), and 7% ix a pentahedron, algo in &% of hase .#° and
vertex a,.

Obviously, we have for each n = 1,2, ...

(15) 111:»;1 — U 11;1”

6.F
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and for each pesf
(16)
there exists a homeomorphism ¢ of 7" onto 17 such that g (a,_,) = Gy.

Let W be the set of rational points of the segment .# and let

(17) "= \J T
Des— TP

We show that

(18) Z"—(a,) is not connected between any pair of its wubsets 77—
—(a,) and Ty—(a,), where p <gq.

In fact, for each seW such that p < s < ¢, the hyperplano eon-
taining s x #™! and a, disconnects £™*' between the sets 77— (a,) and
T%— (a,) and is digjoint with Z" —(a,).

It is obvious that the set 7 is a boundary set in €"'' and honeo ([10],
II, p. 353) that

(19) dim Z" < n+1.

Let V be a dense and countable subset of .# —W. It follows from
the dengity of V and from (15) that
(20) T =1

N4

Now let §(C) and M mean the same as in paper [9], namely let
S8(C) = |J S8, where 8(r) is an n-dimensional sphere, the diameter
¥

of which is the segment of ,-axis with end points (v, 0,...,0) and p =
(3,0,...,0), and let M be a dense subset of S(C) having in each
point dimension 1 and meeting each sphere S(r) in exactly one point.
Now applying the results of paper [9] we show that

(21) the set |U 7% contains a subset A4, such that dim4, = n and
nSF—(WV)

that the intersection of A, ~T% is for each pesf— (W w V) cither

void or a single point.
Indeed, in view of Alexandroff-Hausdorff theorom ([10], I, p. 335)
the set # — (W v V) contains a Cantor set C*. Lot us ombod by homeo-
morphism g the set | 77 into the bundle of spheres 8(C) in sueh a way

re(»
that g(Lcj T7) contains an open subset of §(C). By virtue of formula
(23) from paper [9] the set A, = M ~g(|J T?) is non-void; since by
eQg*

the samne paper the set .M is n-dilmensional in each of its points, it follows
that dimg~'(4,) = n. Rvidently, homeoworphism ¢ maps cach T7%,
where 7¢C*, in only one sphere S(z) of the bundle §(C). Therefore, by
(20) and (21) from [9], the set 4, ~ g(T7) is void or a single point. To com-
plete the proof of (21) it remains to denote ¢~ '(4;) by 4,.
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Now proceed by induction. Assmne that the set P, , has the fol-
lowing properties:

(22) P,_, is dense in 1™,

(23) P,_, is pulverable and a,_, it its dispersion point,

(24) P,_, is o-connected,

(26) dimP,_, =n—1.
These properties are trvoe for n = 2 in virtue of (9)-(12).
Defining the ret P, by the formula

(26) P'n - U !/::(Plll) hed An!

el
we ghall show that it has the properties (22)-(25) for » instead of n—1.
For this purpose first ohserve that, by (22) and (16), | gi(P._))
peV

c |J Tp, and, by (21), 4, < | T, whence by (26) and (17) we infer
neF ped— (V)

that
(27) P, c 7"
In virtue of (22) and (16)
(28) the set gy (P,_,) is dense in 1%,
whence, by (20),
(29) the set Lljrgﬁ(P _1) is dense in 7"+,
Pe
It follows from (21) and (15) that
(30) An c Trtl
Furthermore,
(31) the pot P,—(a,) is dispersed.

Yor if peV, then P, Ty, —(a,), by (26), (21), and (16), is identical
with ¢p(P,_;)— (@,_,). But the latter is dispersed being an image under
homeomorphism g, of the set P, ,—(a,_,), which is dispersed by (23).
And if pesf -~ (W V), then by (21), (16) and (26) the set P, ~ T35 —(a,)
is void or consists of a single point. It follows by (27) and (18) that P,—-

- (a;) does not contain connected subsets; that is (31).

Finally
(32) the wet P, is connected.

In fact, each two connected wets ¢ (P,_,) and gz (P,_,) have by (16)

% common point @, for p, geV, and so the set | J gn(P,_,) is connected
34

([10], IL, p. 82). Hence and from (29), (30) and (26) follows (32) ([10],
I, p. 83).
Now we can prove the properties (22)-(25) of the set .P,.

Rozprawy Matematyczne XXXVII 4
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Property (22)- follows from (29), (30), and (26).

Property (23) follows from (31) and (32) by fhe definition ot puyl
verable set (see p. 3).

To prove property (24) suppose that there oxists o decomposition

o0
P, = U F, into sets I, elosed in P,, non-void and disjoint. Since for
k

=1
each p eV, gp(P,_,) is connectod :nd o-connectod, by (24) and (16), it must
lie in one costituent of this decomiposition. But all theso sets huve a com-
mon point a, and therefore they must Lo eontained in the same consti-
tuent of decomposition, for instance in F;. And sinee K, is closed, P, = I
by (29), (30), and (26), whence Fy == Fy = ... - 0, confrary to suppo-
sition,

Finally, we infer from (26) and (27) that ., =« P, = Z", whenee
1 <dim P, <n+1 by (21) and (19).

EXAMPLE 5. A pulverable and non a-connested sel P, of any findte
dimensionn =1,2,...
[~ -]

Let € = (0) v U €, be a decomposition of the Cantor set €, where
k=1

Oy is a gubset of ¥ lying in the segment 2/8* < » < 1/3*~'. Denote by
J(a, f) an interval a < y < g of y-axis, and by F, the segment 0 <2 <1
of the straight line y = 1.

Putting, generally, Intx(4) = X—X—A for A<= X, we define
an operation y on the set 4, = # X Intg(#). Namely, let form = 1,2, ...

2m+1_
”1111. = Gm XJ( 1 1);

9m+1 * Tomil

" 'Jn-l-l”_l
= s [Ft ).

2m+1
' 1
D;m = Umx J(O’ _2m—}-f)’

y(4y) = U Opv U D,
He 1 m-—1

(see Fig. 6). We have then between A, and each D,, & geometrieal simi-

7

larity without a change of the order of the coordinutes of points.

Put 4, = y(4,). Let us perform the operation y on each of bhe
elements Dy of the sot 4, (see Fig. 7), and put

4y = U e U y(DYy).
1

M) m=
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Ordering all first elements of the sets y(D;,) in a simple sequence
without repeat {Cj}m-1..., and the second ones in a simple sequence
without repeat {Dj}m-1s., We obtain

oo o0 a0
4, = UO;VUG%tUUD‘fn'

m=l M=l Me]
! i ,
H 1

05 .

1

¢l C] 7

? G

) Dz’
) 4 X’

Fig. 6

-
X

Tig. 7

Between A, and each of the sets D3, we have again a geowmetrical
similarity preserving the order of the ordinates. Therefore, we can per-
form on each of them the operation y in the manner described above.
Generally, put for ¢ =1,2,...

i-1 oo 0 i 00 . o«

A, =J UG UpDEYh) =U U Chv U D,

1:-1 M=l M=l f-l el m=1
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So we have defined a soquence of sequences {{Chlmeis,.}ieins.
of sets C, (disjoint as well for different j as for difforent.m), cach of which
is homeomorphic with the set % x . (being similar to it) and disjoint
with F,. Now order all them including F, in a simple sequence without
repeat {Fi}rwoe,.. Thus

1) QIF,,crfo,

(2) FynF, =0 for &k +#1andk,l=0,1,2,..
Put

(3) F=ngm

(4) G = Inty, o(Fr) for k=1,2,...

Evidently, each @ is homeomorphic with € X Intgs () (by similar-
ity), and
(5) each segment tX./, where 7e¢%, contains at most one compo-
nent of G for k =1,2,...
Denoting by W, the set consisting of 4 vertices of the least rectangle
containing 17, we have
(6) WkCFk for _k=1,2,.-.

Now observe that

(1) if a set D disconnects #* between somo points of the sot (¥ X S) v F,
and if D~ F, = 0, then thore exists an open subset I’ of the Can-
tor set ¥ such that D disconnocts 7 X Ints(S#) for each 7el.

Furthermore,
(8) if 7 is the right end point of an interval of # complementary to
(=]
the Cantor set %, and pe[r X Intaf)]— (J W, thon thore oxists
k=l
an opon subset V of 7x J/ such that peV < lim G4, for a sequence
- - Lsco

of sets {Gi iy,

In fact, let V be tho component of the sct Intg (S£)— U W, con-
kel

taining the point p; ¥ is thoen an interval. Two cases are possiblo.

I. V is the left oxtremo component of D, for some natnral j and .
The sot F' contains by definition a soquence of sets {I'Icl)lalz . result-
ing from the operation y on the set D},; we have thon V = lim Gy,

s
([10], I, p. 245), whence obviously V < Lim Gr,-
. lyoo

S
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IT. V is the left extreme component of a #,. Then, accordingly to
(4), we have V c G} = Lim G,, where G, =G, for 1 =1,2,...

I-se0

The coustruction of P, will be hased upon the following four prop-
orties ((9)-(12)) of the set I
(9) The set F is conneoted.

In other words, if a set D disconnects the plane #° between some
two points of ¥, then D~ F # 0. II D~ (Fyvw (J W) # 0 this inequa-

7Y |
lity follows at once from (6) and (3). And if D~ (Fy v U W;) = 0, then

D dlsconuwts I~ [t X Intg1(H)] by (7) together with 11;3 nelghbomhoodm
% X J for some 7 being the right end point of an interval of the set /' — €.

We infer from D~ |J Wy = 0 that D~ [ X Inta(F)] = [ X Inta (Sf)]--

Fewe1

— U W,.. Therefore, for each peD ~ {1 x Intg1(S#)], there exists by (8)
k=1l
an open subset V of 7X.# such that pe¢V < Lim G, for a sequence
oo
{Gyhimrp,..- There must then exist an index % such that D~ @G, #0,
whence D~ F £ 0 by (4) and (3).

Evidently, the set () W, ir countable, whence by (6) and (9) follows

Te=1
at once the second property:

(10) The set | W; is & boundary set in F.

T |

From (9) and (10) follows the third property:
(1) If FP—UW,=XuvY, X#0+£Y and X~nYuXnY =0,

7Y |

o0
then there exists a point wel J Wyn X ~Y.
Rkw]

Since each 7, where %k =0,1,2,..., is non-void and oclosed in
F (being compact), we have by (2) the fourth and last property:

(12) The decomposition (3) is a o¢-decomposition of F.

Thus the set F is not o-connected.
Now put P! = F, and for » = 2,3, ...

(13) Ff =F,xs™"', where k=0,1,2,...,
(14) G = G X Intgn-1(S™), where £k =1,2,...

It follows then hy (4) that
(16) K Y for k=1,2,...,
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and. by (5) thal
(16) each set X ", where 7e%, contains al most one component
of Gy for k =1,2,...
We define now the set ™ putting

(17) /™ ==\ /.

k=
This definition is analogons to the definition (3) ol the set K.
Accordingly, properties (1) and (7)-(12) hold for F" and 2%, respec-
tively, as they do for F and . Namaly

(18) U P c % x 5"
k=1

(19) If a set D disconnects ™' between some points of (6 x #") w B
and if D~ F; = 0, then there exists an open subset: /" of the Cantor
get % such that D disconnects 7 X Inten(#") for each zer.

(20) If 7 is the right end point of an inferval of .# complementary to
the Oantor set ¥, and pe[vX Inten(S™)]— J (W, xL"Y), then

=l
there exists an open subset V of vx /" such that peV < Lim @}
Lav]

for some sequence of sets {G,)i ... - feo
(21) The set F™ is connected.

(22) The set | W, x #*" ix a boundary set in /.
kml

(23) If.F”‘—U(WkX-ﬁn—l)=X\J_Y’_X#O #Y,Xﬁ?k/XhY:: (]’

kel

[= ]
then there exists a point we (J W, such that wx S""'c XAT.
=1

(24) The decomposition (17) is a o-decomposition of .

Thus the set 7" iz not o-connected.

We say that a set ¥ < %X Inten(S") divides locally the space &'
(see, for instance, “local coupure” in Knaster’s paper [9]) provided that
for every continuum D <= &™*! the condition
(i) the set {r:7¢%, D~ [7x Intem ()] # 0} contains an open sub-

set of the Cantor set %
implies the inequality
(ii) D~N £0.

We show that

(25) the set € X Inte (S™) contains u set N dividing locally the space

¢"*! and meeting every component 7 x Intym (#™) of @ % Intgn(.F")
exuetly in one point.
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Using, as in Example 4, the notations 8(%), M, and p, in the same
sense as in [9], recall the proposition proved there that the sel S(%)—
—.(p) contains a subset M dividing locally the space &"*' and having
exactly one common point with every component S(z)— (p) of S(%)—
.—(p). Since there exists a homeomorphism g between #"*'--(p) and
an open subset containing % X Inte(#£") and mapping S(z)—(p) onto
7 X Intgn(F"), the set N = g(IM) has the property (25).

The similarity of the sety % x Intzm(#") and G} can be extended
onto £**; o (26) hnplies that
(26)  cach G% contains N, dividing locally #"*' and having exnctly one

common point with each component of

Now we define the set P,

(27) [)_:' = (I';Fl{.;.(fl w U 1’V/ w U N

k=1

First of all observe that U W, c UF by (6) and (23), and that
kw1

U N, c U % by (26) and (15). Thus

(28) UWewUWee U m,

whence by (24) -’ — )

(29) (U WLVUNI.)* ry = U WkU’LJ] Ny
Furtherimore,

(30) if the set F*— D~ |J (Wix#""") is not connected and D = D,

ko=l

no
then there exists a point wel) W, such that wxs* ' < D.
ke

In fact, let P - DA (W,Xsf ") = XU ¥, where X %0 = Y
k=1

and
(31) XnYoXA~nY =0.

Therefore we have X ~Y < D and
.Fu . U (.H',I.; X "fnnl) o I-X . U (Wk X ]"'_l)] . [Y—" kL) (ka ju—l)].
k=t Fomel -a )

Since D is closed by hypothesig, and since the qetb X and Y are open

in ™ by (31), X— U(W X ¥ 1) £ 0 and ¥Y— U(W,,XJ‘" Y# 0 by

sl
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(22). By (31) these seti ave separated. [t follows that i virtue of (23)

-]
there exists a point we | J W, such thut

k-1
wx Sl e X— U (Wex ) V= U (W™ ),
kel -1
whenee wx f*'c XnYc D. -
Finally, observe that
(82) the set (U Wi v U Nyoin o dinpoersed.

~N LY
Indeed, we have {J £ « ¢ x " by (13) wnd (1), whenee U W, o
k-l /n'u:l

~ ' o o
ulJN, e ?X .ﬁ’: by (28). Then tho set {J Wy U N, is not connected
Kl ka1 Texal

between the points lying in two different components ol the compact set
®x S", and. each component v X S of this compact set contains at most

a countable subset of the set | W;, because the last set is countable,
kel

and at most a countable subset of the sel D Ny, because tes" containg

at most one point of each G% in view of (lnga,nd (26). Therofore, the set

(X ) A (,l:_:)1 W) o QIN r) is at most countable and a fortiori dispersed.
Putting

(33) L—FioU Weo U ¥,

o=l kw1l
we have L < k_) Fy% by (28), whence we infer by (18) that
-0
(34) Lc(€xS™ .

(35) The set L is connected.

In other words, if a set D disconnects the space &+ betiwoen some
points of L, then

(36) DAL #0.

Indeed, we may assume D ig closed ([10], II, p. 97) and bounded,
hence u continunm ([2], p. 343). If D~ (PP v D W) #+ 0, then (36) fol-
lows directly from (33). And if !

(37) Doy W o,

k-1
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then by (30)

(38) the set F"—D~ (W, x#""') is connected.
k=1
From (37) and (34) follows the existence of I' =« ¢ fulfilling (19).
Hence we sce by (38) that there exists a point reI” being the right end
point of an interval of .# complementary to the Cantor set ¢, such that
D disconnects 7x S" together with its neighbourhood in #x #™ and D

does not meet U (W% #™'). Then for each point peD  [(7 X F*)—

— U (Wi x#" )] there exists by (20) an open subset of 7x 4™ contain-
1ng p and contained in Lim G, f01 some sequence {G%}i.1s,.. Then
lsoo

there exigts %, such that D ~ (rx.ﬁ“) ~ @, # 0 for all v running over
an open subset I'y = I' of the Cantor sot ¥, whence N, ~D # 0 by (26).
Hence and from (33) we obtain inequality (36).
(39) The set L is not o-connected, and Fg is one of the constituents
of its o-decomposition.
In fact, we have L = " by (33), (28), and (17), and .L has by (6)
and (24) common points with each element of the o-decomposition (17)

of I'". Then U (L~ F%) is a o-decomposition of L. Finally, Fy « L by

formula (33).

Now wo can prove the properties of the set P,.
The set P, is pulverable. Indeed, it is connected in view of (33),
[+ <]

(27), and (20) of §2 ([10], II, p. 80), and the set @sM(J Wiw U Ny)
km1 k=1

is dispersed by (32), (29), and (21) of § 2. Since by virtue of Lemma 2.15,
(29), and (27), the last sot differs from the connected set P, for a point
q:ﬁ«g(F.',‘), this point is a dispersion point of P,. Hence P, is pulverable

by the definition of pulverable set (see p. 3).
The set P, is not o-connected and its dispersion point is onc of the
constituents of its a-decomposition, because the idontification Prn of Iy,

which is by (39) one of tho constituents of the o-decomposition of L,
maps this g-decomposition, by (27) and (33), onto the o-decomposition
of P,. Hence the sct P, is not o-connected and the point w'g(FS') is one of

the constituents of its o-decomposition.

Finally, the sot P, is n-dimensional. Indeed, the sct N, divides locally
the space 6"*!; thus N, is at least n-dimensional (Mazurkiewicz theorem;
see [10], 1L, p. 343). The set (¥ X #") v Fy, as containing no solid (n4-1)-
dimensional sphere, is a boundary set in &"*' and therefore at most
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n-dimensional ([10], II, p. 363). Since U Ny < Z < (¢ X S") v Iy, by
k:l
(33) and (34), then

n < dim (|J Np) <dim Z < dim [(¥x ™) v Fy] < n,
k=1

ie. dim (| N;) =dimZ =n, whence also dim P, =n, because, by
k=l

(21) of § 2 and (29), the identification neither inereases nor lowers dimen-
sion.
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