Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 31 | 1 | 41-59
Tytuł artykułu

Forecasting the confidence interval of efficiency in fuzzy DEA

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Data envelopment analysis (DEA) is a well-known method that based on inputs and outputs calculates the efficiency of decision-making units (DMUs). Comparing the efficiency and ranking of DMUs in different periods lets the decision-makers prevent any loss in the productivity of units and improve the production planning. Despite the merits of DEA models, they are not able to forecast the efficiency of future periods with known input/output records of the DMUs. With this end in view, this study aims at proposing a forecasting algorithm with a 95% confidence interval to generate fuzzy data sets for future periods. Moreover, managers’ opinions are inserted in the proposed forecasting model. Equipped with the forecasted data sets and concerning the data sets from earlier periods, this model can rightly forecast the efficiency of the future periods. The proposed procedure also employs the simple geometric mean to discriminate between efficient units. Examples from a real case including 20 automobile firms show the applicability of the proposed algorithm.
Twórcy
  • Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • ANDERSEN P., PETERSEN N.C., A procedure for ranking efficient units in Data Envelopment Analysis, Manage. Sci., 1993, 39 (10), 1261–1264.
  • BANKER R.D., CHARNES A., COOPER W.W., Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage. Sci., 1984, 30, 1078–1092.
  • BARAK S., HEIDARY DAHOOEI J., A novel hybrid fuzzy DEA–Fuzzy MADM method for airlines safety evaluation, J. Air Trans. Manage., 2018, 73, 134–149.
  • CHARNES A., COOPER W.W., Chance-constrained programming, Manage. Sci., 1959, 6, 73–79.
  • CHARNES A., COOPER W.W., Programming with linear fractional functional, Naval Res. Log. Quart., 1962, 9, 181–186.
  • CHARNES A., COOPER W.W., RHODES E., Measuring the efficiency of decision-making units, Eur. J. Oper. Res., 1978, 2, 429–444.
  • DOYLE J.R., GREEN R.H., Efficiency and cross-efficiency in DEA: Derivations, meanings and uses, J. Oper. Res. Soc., 1994, 45, 567–578.
  • DOYLE J.R., GREEN R.H., Cross-evaluation in DEA: Improving discrimination among DMUs, INFOR, 1995, 33, 205–222.
  • EMROUZNEJAD A., ROSTAMI-TABAR B., PETRIDIS K., A novel ranking procedure for forecasting approaches using data envelopment analysis, Techn. Forec. Soc. Change, 2016, 111, 235–243.
  • FILDES R., WEI Y., ISMAIL S., Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures, Int. J. Forec., 2011, 27, 902–922.
  • HATAMI-MARBINI A., EMROUZNEJAD A., TAVANA M., A taxonomy and review of the fuzzy EA literature: Two decades in the making, Eur. J. Oper. Res., 2011, 214 (3), 457–472.
  • HOSSEINZADEH LOTFI F., NAVABAKHS M., TEHRANIAN A., ROSTAMY MALKHALIFEH M., SHAHVERDI R., Ranking bank branches with interval data the application of DEA, Int. Math. Forum, 2007, 2 (9), 429– 440.
  • JAHANSHAHLOO G.R., HOSSEINZADEH LOTFI F., ROSTAMY MALKHALIFEH M., AHADZADEH NAMIN M., A generalized model for data envelopment analysis with interval data, Appl. Math. Model., 2009, 33, 3237–3244.
  • KAO C., LIU S.T., Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets Syst., 2000, 119, 149–160.
  • KWAKERNAAK H., Fuzzy random variables. Part II. Algorithms and examples for the discrete case, Inf. Sci., 1979, 17 (3), 253–278.
  • KWAKERNAAK H., Fuzzy random variables. Part I. Definitions and theorems, Inf. Sci., 1978, 15 (1), 1–29.
  • LAND K., LOVELL C.A.K., THORE S., Chance-constrained data envelopment analysis, Manage. Dec. Econ., 1994, 14, 541–554.
  • LERTWORASIRIKUL S., FANG S.C., JOINES J.A., NUTTLE H.L.W., Fuzzy data envelopment analysis (DEA): A possibility approach, Fuzzy Sets Syst., 2003, 139, 379–394.
  • LIM D., ANDERSON T.R., INMAN O., Choosing effective dates from multiple optima in technology forecasting using data envelopment analysis (TFDEA), Techn. Forec. Soc. Change, 2014, 88, 91–97.
  • LIM D., ANDERSON T.R., SHOTT T., Technological forecasting of supercomputer development: The march to exascale computing, Omega, 2015, 51, 128–135.
  • LIANG L., WU J.,COOK W.D., ZHU J., Alternative secondary goals in DEA Cross Efficiency evaluation, Int. J. Prod. Econ., 2008, 113, 1025–1030.
  • LIANG L.,WU J.,COOK W.D., ZHU J., The DEA game cross-efficiency model and its NASH equilibrium, Oper. Res., 2008, 56, 5, 1278–1288.
  • OLESEN O.B., PETERSEN N.C., Chance constrained efficiency evaluation, Manage. Sci., 1995, 41, 442–457.
  • PEYKANI P., MOHAMMADI E., ROSTAMY-MALKHALIFEH M., HOSSEINZADEH LOTFI F., Fuzzy data envelopment analysis approach for ranking of stocks with an application to Tehran Stock Exchange, Adv. Math. Fin. Appl., 2019, 4, 31–43.
  • SAATI MOHTADI S., MEMARIANI A., JAHANSHAHLOO G.R., Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Opt. Dec., 2002, 1, 255–267.
  • SEXTON T.R., SILKMAN R.H., HOGAN A.J., Data envelopment analysis: critique and extensions, New Dir. Progr. Eval., 1986, 32, 73–105.
  • SHABANPOUR H., YOUSEFI S., FARZIPOOR SAEN R., Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks, J. Cleaner, 2017, 142, 1098–1107.
  • TAVASSOLI M., FARZIPOOR SAEN R., Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis, Sust. Prod. Cons., 2019, 18, 41–52.
  • WANG Y.M., CHIN K.S., Some alternative models for DEA cross-efficiency evaluation, Int. J. Prod. Econ., 2010, 128, 332–338.
  • WANG Y.M., CHIN K.S., Fuzzy data envelopment analysis: A fuzzy expected value approach, Exp. Syst. Appl., 2011, 37, 11678–11685.
  • XU B., OUENNICHE J., A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil pricesʼ volatility forecasting models, En. Econ., 2012, 34, 576–583.
  • ZADEH L.A., Fuzzy sets, Inf. Control, 1965, 8, 338–358.
  • ZADEH L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1978, 1 (1), 3–28.
  • ZERAFAT ANGUS L.M., TAJADDINI A., MUSTAFA A.,JALAL KAMALI M., Ranking alternatives in a preferential voting system using fuzzy concepts and data envelopment analysis, Comp. Ind. Eng., 2012, 63, 784–790.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-5a13ceb2-0eb3-4d02-8520-351c19d54f44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.