Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 3 | 9 | 2007-2015
Tytuł artykułu

Optical Analysis of Ag-NPs Containing Methyl Ammonium Lead Tri-Iodide Thin Films

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methyl ammonium lead tri-iodide hybrid thin films were grown using solution technique. They were doped with silver nano-particles at different concentrations at concentrations of 0.05, 0.06, 0.07, 0.08, and 0.09 mM. Their reflectance and transmittance were recorded in the wavelength range 300–900 using UV-Vis double - beam spectrophotometer. Using these measurements, other optical parameters were simulated using scout software. The effect of silver nanoparticles was investigated. Results revealed that the thin films had highest transmittance of about 79 % as their band gap varied from 1.921–1.832 eV. Electrical conductivity varied from 1.4–1.6×105 S cm–1 while optical conductivity varied in the range of 0.3–0.6×1010 sec-1. They had a significantly low refractive index, suitable for optical applications within the range of 1.6–1.8. The extinction coefficient varied in the range as 1.0–1.7×10-5 while the absorption coefficient varied varies in the range of 2.1-4.2 cm- 1. It was concluded that the thin films were suitable for photonic device applications.
Czasopismo
Rocznik
Tom
3
Numer
9
Strony
2007-2015
Opis fizyczny
Daty
wydano
2017-09-30
Twórcy
  • Technical University of Mombasa
  • Kenyatta University
  • Kenyatta University
Bibliografia
  • Abate, A., Saliba, M., Hollman, D. J., Stranks, S. D., Wojciechowski, K., Avolio, R., … Snaith, H. J. (2014). Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano Letters, 14(6), 3247–3254. doi: 10.1021/nl500627x
  • Agarwal, S., & Nair, P. R. (2014). Performance optimization for Perovskite based solar cells. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). doi: 10.1109/pvsc.2014.6925202
  • Agarwal, S., & Nair, P. R. (2015). Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 107(12), 123901. doi: 10.1063/1.4931130
  • Ball, J. M., Lee, M. M., Hey, A., & Snaith, H. J. (2013). Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 6(6), 1739–1743. doi: 10.1039/c3ee40810h
  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319. doi: 10.1038/nature12340
  • Collavini, S., Völker, S. F., & Delgado, J. L. (2015). Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie International Edition, 54(34), 9757–9759. doi: 10.1002/anie.201505321
  • Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6, 7497. doi: 10.1038/ncomms8497
  • Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2013). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24(1), 151–157. doi: 10.1002/adfm.201302090
  • Gardini, D., Christensen, J. M., Damsgaard, C. D., Jensen, A. D., & Wagner, J. B. (2016). Visualizing the mobility of silver during catalytic soot oxidation. Applied Catalysis B: Environmental, 183, 28–36. doi: 10.1016/j.apcatb.2015.10.029
  • Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W.-S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I., & Bisquert, J. (2014). General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters, 14(2), 888–893. doi: 10.1021/nl404252e
  • Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897–903. doi: 10.1038/nmat4014
  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088–4093. doi: 10.1039/c1nr10867k
  • Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051. doi: 10.1021/ja809598r
  • Lang, L., Yang, J.-H., Liu, H.-R., Xiang, H. J., & Gong, X. G. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378(3), 290–293. doi: 10.1016/j.physleta.2013.11.018
  • Li, Z., Zhang, M., Cheng, D., & Yang, R. (2016). Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydrate Polymers, 151, 834–840. doi: 10.1016/j.carbpol.2016.06.012
  • Lou, X., Pan, H., Zhu, S., Zhu, C., Liao, Y., Li, Y., … Chen, Z. (2015). Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 69, 43–47. doi: 10.1016/j.catcom.2015.05.021
  • Minemoto, T., & Murata, M. (2014). Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of Applied Physics, 116(5), 054505. doi: 10.1063/1.4891982
  • Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M., & De Angelis, F. (2013). First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117(27), 13902–13913. doi: 10.1021/jp4048659
  • Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., … Mohite, A. D. (2015). High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347(6221), 522–525. doi: 10.1126/science.aaa0472
  • Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., … Snaith, H. J. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), 3061–3068. doi: 10.1039/c4ee01076k
  • Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764–1769. doi: 10.1021/nl400349b
  • Saoud, K., Alsoubaihi, R., Bensalah, N., Bora, T., Bertino, M., & Dutta, J. (2015). Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Materials Research Bulletin, 63, 134–140. doi: 10.1016/j.materresbull.2014.12.001
  • Sha, W. E. I., Ren, X., Chen, L., & Choy, W. C. H. (2015). The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106(22), 221104. doi: 10.1063/1.4922150
  • Shabani Shayeh, J., Ehsani, A., Ganjali, M. R., Norouzi, P., & Jaleh, B. (2015). Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Applied Surface Science, 353, 594–599. doi: 10.1016/j.apsusc.2015.06.066
  • Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4(21), 3623–3630. doi: 10.1021/jz4020162
  • Sönnichsen, C., Franzl, T., Wilk, T., Plessen, G. von, & Feldmann, J. (2002). Plasmon resonances in large noble-metal clusters. New Journal of Physics, 4, 93–93. doi: 10.1088/1367-2630/4/1/393
  • Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341–344. doi: 10.1126/science.1243982
  • Sun, X., Asadpour, R., Nie, W., Mohite, A. D., & Alam, M. A. (2015). A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 5(5), 1389–1394. doi: 10.1109/jphotov.2015.2451000
  • Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 4(1). doi: 10.1038/srep04467
  • Wang, U. (2014, September 28). Perovskite Offers Shot at Cheaper Solar Energy. Retrieved from https://www.wsj.com/articles/perovskite-offers-shot-at-cheaper-solar-energy-1411937799
  • Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., & Chen, G. (2015). Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595–601. doi: 10.1016/j.drudis.2014.11.014
  • Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 7(8), 2619–2623. doi: 10.1039/c4ee01138d
  • You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., … Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 8(2), 1674–1680. doi: 10.1021/nn406020d
  • Zhou, Y., Yang, M., Wu, W., Vasiliev, A. L., Zhu, K., & Padture, N. P. (2015). Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Material Chemistry A, 3(15), 8178–8184. doi: 10.1039/c5ta00477b
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-52b3afa3-2d76-4304-ae40-bb6e4ed2107e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.