Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 | 447-459
Tytuł artykułu

Category Free Category Theory and Its Philosophical Implications

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There exists a dispute in philosophy, going back at least to Leibniz, whether is it possible to view the world as a network of relations and relations between relations with the role of objects, between which these relations hold, entirely eliminated. Category theory seems to be the correct mathematical theory for clarifying conceptual possibilities in this respect. In this theory, objects acquire their identity either by definition, when in defining category we postulate the existence of objects, or formally by the existence of identity morphisms. We show that it is perfectly possible to get rid of the identity of objects by definition, but the formal identity of objects remains as an essential element of the theory. This can be achieved by defining category exclusively in terms of morphisms and identity morphisms (objectless, or object free, category) and, analogously, by defining category theory entirely in terms of functors and identity functors (categoryless, or category free, category theory). With objects and categories eliminated, we focus on the “philosophy of arrows” and the roles various identities play in it (identities as such, identities up to isomorphism, identities up to natural isomorphism ...). This perspective elucidates a contrast between “set ontology” and “categorical ontology”.
Rocznik
Tom
25
Numer
4
Strony
447-459
Opis fizyczny
Daty
online
2016-06-14
Twórcy
  • Copernicus Center for Interdisciplinary Studies, ul. Sławkowska 17, 31-016 Kraków, Poland , mheller@wsd.tarnow.pl
  • The Pontifical University of John Paul II, Faculty of Philosophy, ul. Kanonicza 9, 31-002 Kraków, Poland
Bibliografia
  • Adámek, J., H. Herrlich, and G. Strecker, Abstract and Concrete Categories. The Joy of Cats, katmat.math.uni-bremen.de/acc.pdf (originally published by Wiley and Sons: New York, 1990).
  • Awodey, S., Category Theory, second edition, Oxford University Press: Oxford, 2011. DOI: 10.1093/acprof:oso/9780198568612.001.0001
  • Bell, I.L., “From absolute to local mathematics”, Synthese, 69 (1986): 409–426. DOI: 10.1007/BF00413980
  • Benacerraf, P., “What numbers could not be?”, Philosophical Review, 74, 1 (1965): 47–73. DOI: 10.2307/2183530
  • Eilenberg, S., and S. Mac Lane, “A general theory of natural equivalences”, Transactions of the American Mathematical Society, 58 (1945): 231–294. DOI: 10.1090/S0002-9947-1945-0013131-6; http://www.ams.org/journals/tran/1945-058-00/S0002-9947-1945-0013131-6/S0002-9947-1945-0013131-6.pdf
  • French, S., The Structure of the World. Metaphysics and Representation, Oxford University Press: Oxford, 2014. DOI: 10.1093/acprof:oso/9780199684847.001.0001
  • Goldblatt, R., Topoi. The Categorical Analysis of Logic, revised edition, Dover: Mineola, 1984.
  • Ladyman, J., “What is structural realism?”, Studies in the History and Philosophy of Science, 29, 3 (1998): 409–424. DOI: 10.1016/S0039-3681(98)80129-5
  • Lawvere, F.W., “Functorial semantics of algebraic theries and some algebraic problems in the context of functorial semantics of algebraic theories”, 1963. www.tac.mta.ca/tac/reprints/articles/5/tr5.pdf
  • Resnik, M., Mathematics as a Science of Patterns, Oxford University Press: Oxford, 1997. DOI: 10.1093/0198250142.001.0001
  • Rodin, A., “Identity and categorification”, Philosophia Scientiae, 11, 2 (2007): 27–65. DOI: 10.4000/philosophiascientiae.333
  • Rodin, A., Axiomatic Method and Category Theory, Springer: Heidelberg, New York, Dordrecht, London, 2014. DOI: 10.1007/978-3-319-00404-4
  • Shapiro, S., Philosophy of Mathematics: Structure and Ontology, Oxford University Press: New York, 1997.
  • Semadeni, Z., Wiweger, A., Wstęp do teorii kategorii i funktorów (In Polish; Introduction to the Theory of Categories and Functors), second edition, PWN: Warszawa, 1978.
  • Simmons, H., An Introduction to Category Theory, Cambridge University Press: Cambridge, 2011. DOI: 10.1017/CBO9780511863226
  • Teller, P., An Interpretative Introduction to Quantum Field Theory, Princeton University Press: Princeton, 1995.
  • Worall, J., “Structural realism: The best of both worlds”, Dialectica, 43, 1–2 (1989): 99–124. DOI: 10.1111/j.1746-8361.1989.tb00933.x
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-4d173851-94dc-4955-96fb-af635e933a75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.