Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 | 509–530
Tytuł artykułu

The Logical Burdens of Proof. Assertion and Hypothesis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes two logical analyses of (the norms of) justification. In a first, realist-minded case, truth is logically independent from justification and leads to a pragmatic logic LP including two epistemic and pragmatic operators, namely, assertion and hypothesis. In a second, antirealist-minded case, truth is not logically independent from justification and results in two logical systems of information and justification: AR4 and AR4¢, respectively, provided with a question-answer semantics. The latter proposes many more epistemic agents, each corresponding to a wide variety of epistemic norms. After comparing the different norms of justification involved in these logical systems, two hexagons expressing Aristotelian relations of opposition will be gathered in order to clarify how (a fragment of) pragmatic formulas can be interpreted in a fuzzy-based question-answer semantics.
Rocznik
Tom
26
Numer
4
Strony
509–530
Opis fizyczny
Daty
wydano
2017-12-15
Twórcy
  • Tallinn University of Technology, Ragnar Nurkse Department of Innovation and Governance, Akadeemia tee 3, 12618 Tallinn, Estonia, chiffidaniele@gmail.com
  • Universidade Estadual de Maringá, Centro de Cięncias Humanas, Letras e Artes, Avenida Colombo, Campus Universitário – CEP 87.020-900 – Maringá – PR, Brazil , schangfabien@gmail.com
Bibliografia
  • Bellin, G., “Assertions, hypotheses, conjectures, expectations: Roughsets semantics and proof-theory”, pages 193–241 in Advances in Natural Deduction: A Celebration of Dag Prawitz’s Work, L.C. Pereira, E.H. Haeusler, V. de Paiva (eds.), “Trends in Logic”, vol. 39, Springer, Dordrecht, 2014. DOI: 0.1007/978-94-007-7548-0_10
  • Bellin, G., M. Carrara, D. Chiffi, D., and A. Menti, “Pragmatic and dialogic interpretations of bi-intuitionism. Part I”, Logic and Logical Philosophy 23, 4 (2014): 449–480. DOI: 10.12775/LLP.2014.011
  • Bellin, G., M. Carrara, and D. Chiffi, “On an intuitionistic logic for pragmatics”, Journal of Logic and Computation, exv036 (2015). DOI: 10.1093/logcom/exv036
  • Carrara, M., D. Chiffi, and C. De Florio, “Assertions and hypotheses: A logical framework for their opposition relations”, Logic Journal of the IGPL 25, 2 (2017): 131–144. DOI: 10.1093/jigpal/jzw036
  • Carrara, M., and D. Chiffi, “The knowability paradox in the light of a logic for pragmatics”, pages 47–58 in Recent Trends in Philosophical Logic, R. Ciuni, H. Wansing, and C. Willkommen (eds.), “Proceedings of Trends in Logic XI”, Studia Logica Library, “Trends in Logic”, vol. 41, Springer, Berlin, 2014. DOI: 10.1007/978-3-319-06080-4_3
  • Carrara, M., D. Chiffi, and D. Sergio, “Knowledge and proof: a multimodal pragmatic language”, pages 1–13 in Logica Yearbook 2013, V. Punčochář and M. Dančák (eds.), College Publication, London, 2014.
  • Dalla Pozza, C., and C. Garola, “A pragmatic interpretation of intuitionistic propositional logic”, Erkenntnis 43 (1995): 81–109. DOI: 10.1007/BF01131841
  • Dugundji, J., “Note on a property of matrices for Lewis and Langford’s calculi of propositions”, The Journal of Symbolic Logic 5, 4 (1940): 150–151. DOI: 10.2307/2268175
  • Schang, F., “Abstract logic of oppositions”, Logic and Logical Philosophy 21 (2012): 415–438. DOI: 10.12775/LLP.2012.019
  • Schang, F., “A four-valued strong implication”, 2017 (unpublished manuscript).
  • Schang, F., and A. Costa-Leite, “Une sémantique générale des croyances justifiées”, CLE 16, 3 (2016).
  • Shramko, Y. “Dual intuitionistic logic and a variety of negations: the logic of scientific research”, Studia Logica 80, 2–3 (2005): 347–367. DOI: 10.1007/s11225-005-8474-7
  • Shramko, Y., “A modal translation for dual-intuitionistic logic”, The Review of Symbolic Logic 9, 2 (2016): 251–265. DOI: 10.1017/S1755020316000022
  • Smessaert, H., “On the 3D visualization of the logical relations”, Logica Universalis 3 (2009): 212–231. DOI: 10.1007/s11787-009-0010-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-404f4e20-219e-48a2-beb6-be78bfdcbcc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.