Warianty tytułu
Języki publikacji
Abstrakty
In 1973, Sette presented a calculus, called P1, which is recognized as one of the most remarkable paraconsistent systems. The aim of this paper is to propose a new axiomatization of P1. The axiom schemata are chosen to show that P1 behaves in a paraconsistent way only at the atomic level, i.e. the rule: α, ~α / β holds in P1 only if α is not a propositional variable.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
265–273
Opis fizyczny
Daty
wydano
2015-06-01
online
2015-02-06
Twórcy
autor
- Department of Logic, University of Łódź, Kopcińskiego 16/18, 90–232 Łódź, Poland , janciu@uni.lodz.pl
Bibliografia
- Carnielli, W., M.E.Coniglio, and J. Marcos, “Logics of formal inconsistency”, pages 1–95 in D.M. Gabbay and F. Guenthner (eds.) Handbook of Philosophical Logic, vol. 14, Springer, 2007. DOI: 10.1007/978-1-4020-6324-4_1
- da Costa, N.C.A., “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic, 15, 4 (1974): 497–510. DOI: 10.1305/ndjfl/1093891487
- Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy, 7, 1 (1999): 35–56. DOI: 10.12775/LLP.1999.003
- Karpenko, A., “Jaśkowski’s criterion and three-valued paraconsistent logics”, Logic and Logical Philosophy, 7, 1 (1999): 81–86. DOI: 10.12775/LLP.1999.006
- Malinowski, G., Many-Valued Logics, Clarendon Press, Oxford, 1993.
- Pynko, A.P., “Algebraic study of Sette’s maximal paraconsistent logis”, Studia Logica, 54, 1 (1995): 89–128.
- Sette, A.M., “On the propositional calculus P1”, Mathematica Japonicae, 18, 3 (1973): 173–180.
- Sette, A.M., and E.H. Alves “On the equivalence between some systems of non-classical logic”, Bul letin of the Section of Logic, 25, 2 (1973): 68–72.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-395b7c04-817e-4af1-b736-6b2aff34c74d