Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 3 | 10 | 2007-2012
Tytuł artykułu

Determination of Planck’s Constant using Light Emitting Diodes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Planck’s constant is named after Max Planck, a nineteenth-century physicist who first described it by relating it as E=h where symbols have their usual meanings. It is a relationship used when comparing a quantum of energy absorbed to that emitted during electron transitions which can be extended to emission by light-emitting diodes. The purpose of this study was to determine Planck’s constant using the energy needed to excite free electrons in a light emitting diode. When a light-emitting diode is switched on, electrons recombine with holes within and release energy in the form of photons which can be determined using energy band gaps of the semiconductor composite material used to fabricate the LED. Therefore, LEDs consist of a chip of doped semiconducting layers to create a p-n junction. In LEDs, current flows easily from the p-side to the n-side but not in the reverse from electrodes with different voltages. When an electron meets a hole, it is inhaled and it falls into lower energy level releasing energy in the form of a photon. Photon emissions take place when electrons return to a lower energy state. Therefore, electrons within a LED crystal are excited to a higher energy state and any radiation emitted depends on the p-n junction direct band gap. Depending on the materials used, LEDs emit radiation with energies corresponding to either near-infrared, visible, or near-ultraviolet light. In reality, a LED is designed to have a small area (approximately less than 1 mm2). In this work, an electric current was used to excite electrons and the corresponding energy was measured using a voltmeter. Planck’s constant was calculated by substituting the obtained frequency and energy from the voltmeter in the relationship, E = hw.
Czasopismo
Rocznik
Tom
3
Numer
10
Strony
2007-2012
Opis fizyczny
Daty
wydano
2017-10-20
Twórcy
  • Technical University of Mombasa
  • Kenyatta University
  • Kenyatta University
Bibliografia
  • Altschul, B., Bailey, Q. G., Blanchet, L., Bongs, K., Bouyer, P., Cacciapuoti, L., … Wolf, P. (2015). Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission. Advances in Space Research, 55(1), 501–524. doi: 10.1016/j.asr.2014.07.014
  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015). Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Foundations of Physics, 45(10), 1362–1378. doi: 10.1007/s10701-015-9929-y
  • Ballentine, L. E. (2008). Quantum mechanics: a modern development (2nd ed.). Singapore: World Scientific.
  • De Ronde, C. (2015). Modality, Potentiality, and Contradiction in Quantum Mechanics. New Directions in Paraconsistent Logic, 249–265. doi: 10.1007/978-81-322-2719-9_11
  • Dragoman, D. (2005). Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem. Physica Scripta, 72(4), 290–296. doi: 10.1238/physica.regular.072a00290
  • Henson, J. (2015). Bounding Quantum Contextuality with Lack of Third-Order Interference. Physical Review Letters, 114(22). doi: 10.1103/physrevlett.114.220403
  • Leggett, A. J. (2008). Realism and the physical world. Reports on Progress in Physics, 71(2), 022001. doi: 10.1088/0034-4885/71/2/022001
  • Peña, L. (2016). EMERGING QUANTUM: the physics behind quantum mechanics. N. d.: Springer.
  • Reinisch, G. (1994). Nonlinear quantum mechanics. Physica A: Statistical Mechanics and Its Applications, 206(1-2), 229–252. doi: 10.1016/0378-4371(94)90128-7
  • Svensson, B. E. Y. (2014). On the interpretation of quantum mechanical weak values. Physica Scripta, T163, 014025. doi: 10.1088/0031-8949/2014/t163/014025
  • Weinberg, S. (1989). Testing quantum mechanics. Annals of Physics, 194(2), 336–386. doi: 10.1016/0003-4916(89)90276-5
  • Znojil, M. (2004). Relativistic supersymmetric quantum mechanics based on Klein–Gordon equation. Journal of Physics A: Mathematical and General, 37(40), 9557–9571. doi: 10.1088/0305-4470/37/40/016
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-361d7504-5ebc-42cf-9ae6-775c4ee572b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.