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 Abstract. Planck’s constant is named after Max Planck, a nineteenth-century 
physicist who first described it by relating it as E=h
usual meanings. It is a relationship used when comparing a quantum of energy 
absorbed to that emitted during electron transitions which can be extended to 
emission by light-emitting diodes. The purpose of this study was to determine 
Planck’s constant using the energy needed to excite free electrons in a light 
emitting diode. When a light-emitting diode is switched on, electrons recombine 
with holes within and release energy in the form of photons which can be 
determined using energy band gaps of the semiconductor composite material 
used to fabricate the LED. Therefore, LEDs consist of a chip of doped 
semiconducting layers to create a p-n junction. In LEDs, current flows easily 
from the p-side to the n-side but not in the reverse from electrodes with different 
voltages. When an electron meets a hole, it is inhaled and it falls into lower 
energy level releasing energy in the form of a photon. Photon emissions take 
place when electrons return to a lower energy state. Therefore, electrons within 
a LED crystal are excited to a higher energy state and any radiation emitted 
depends on the p-n junction direct band gap. Depending on the materials used, 
LEDs emit radiation with energies corresponding to either near-infrared, visible, 
or near-ultraviolet light. In reality, a LED is designed to have a small area 
(approximately less than 1 mm2). In this work, an electric current was used to 
excite electrons and the corresponding energy was measured using a voltmeter. 
Planck’s constant was calculated by substituting the obtained frequency and 
energy from the voltmeter in the relationship, E = h. 

Keywords: LEDs; Bohr frequency; Fermi’s Golden Rule; Max Planck; Eigen-
functions; time-independent Schrödinger equation; transition moment; Bloch 
oscillation. 

 

INTRODUCTION  

Light wavelength can be measured using a spec-
trometer. Using the relationship, c = fλ, one can 
find the frequency emitted by any diode [4, 8, 9]. 
In this work, we start by considering the quan-
tum mechanics of light absorption between two 
close states arbitrary taken as state 1 and state 2, 
with Eigen-functions with Eigen-values, ψ1, ψ2 
and with corresponding wave-energies E1, E2, 
respectively. This can be illustrated as shown in 
Figure 1.  

 

 

Figure 1 – Energy in close states arbitrary 
taken as 1 and 2 
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According to the Bohr condition [3, 1, 5], absorp-
tion is only “allowed” when the energy of the 
photon, hν, is equal to the energy difference be-
tween the two states (state 1 and state 2) i. e.: 
 

ΔE = E2 – E1 = hν .    (1) 
 

Consider an electron in the Bohr orbit of a hy-
drogen atom and its interaction with electro-
magnetic radiation especially visible light wave. 
It’s clear that an electron in a particular state at 
time t = 0, has a probability to be found in some 
other state at a later time t. In which the transit-
ing energy can be expressed as (2): 
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This expression seems to be easy and direct; 
however, there are other “rules” that govern such 
transitions.  

Recalling from the quantum mechanics (QM) 

postulates that if the functions 
0
j  are Eigen-

functions of the time-independent Schrödinger 
equation, the using the Eigen operators, we ob-
tain the expression for time-independent 
Schrödinger equation as (3) 
 

0000ˆ
jjj EH   .      (3) 

 

This results into a time-dependent wave-function 
commonly expressed in the form of (4): 
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In this case, each 
0
j  forms a solution to the 

time-dependent Schrödinger equation [3], thus 
easily accepted that (5): 
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Although in this case, each 
0
j  arbitrary repre-

sents a stationary state in the system, it’s gener-
ally accepted that the most general solution of (5) 
would best be described using a superposition 
state hence represented by the expression (6): 

0

0

0
jj

j

a  




 .    (6) 

 

A superposed expression is not easy to analyze 
unless it is normalized [3, 7, 8]. So it is necessary 
that the expression (6) is normalized to give

1* 
j

jj aa .  Equation 5 implies that each 

product in the summation ( jjaa*
) defines a 

measure of the probability and therefore, its 
shows a measure of where the system is likely to 
be found in a particular state j with energy Ej. 
From these assumptions, Ψ0 forms a general 
function and from the coefficients in the expan-
sion in (6), it becomes easy to determine the 
probability of finding a particular state j in the 
system. Light Emitting Diode modeling starts by 
assuming that an atom has a fixed state near the 
nucleus. We suppose that at time, t=0, the system 
is described by states labeled by the quantum 

numbers, n1, ℓ1, 
1

m [3, 6, 4, 5]. It will be assumed 

that all other terms in the expansion being zero 
at time t= 0 so that (7):  
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Hence, we note that, 0.1*  jj

j

aa  . 

These states start to denote state 1 in which the 
electron orbits about the nucleus represented 
schematically as in Figure 2. 

 

 

Figure 2 – Electron orbits about the nucleus in state 1 

 

By imagining that a light wave oscillates at some 
particular frequency, ν, so that it turns on its per-
turbation [11], then (8):  
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)]/(2[cos0 tzEE xx    .  (8) 

 

At this point, it demands that its probability at 
some later time, t, will find the system in some 
other new state 2. To determine this new state, 
we find the values of the corresponding coeffi-
cients in the expansion expresses in (9):  
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These coefficients can be represented schemati-
cally as in Figure 3: 

 

 

Figure 3 – Corresponding coefficients in the 
expansion in state 2 

 

For simplicity purposes, we let the system to be 
analyzed here to have only two states, 1 and 2 
where a1=1.0 at time t=0. We also let the fre-
quency of the light wave obey Bohr frequency 
condition [3] given as (10): 

 
h

EE 12  .      (10) 

 

Using (9), the wave-function of the system will 
reduce to (11): 
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Therefore at any time t, the time-dependent 
Schrödinger equation is obeyed hence general-
ized as (12): 
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Form (12) the potential energy function, V, in-
clude Coulomb potential (-Ze2/r), which pro-
duces a perturbation interaction on the electric 

field, oE0  due to the light wave with an electric 

dipole oriented in x-direction expressed [4] as 
(13): 
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If (12) and (13) are substituted into (11), and 
then simplify them further using (8), we obtain 
the time dependence of the coefficients a1 and a2 
explicitly as (14): 
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Applying the orthogonality of the unperturbed 

functions [2], 
0
j , and by multiplying both sides 

of (14) by an Eigen-function 
*
2 and finally inte-

grating the resulting expression, we obtain (15):
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In (15) the quantity 
dt

tda )(2  represents the rate 

of transitions from state 1 to state 2 and there-
fore solving for a2(t) within very short times 

spans, (t)~1, and 1
*
21

*
2 ,,  , will yield 

(16): 
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Such a modelled (16) reduces the probability of 
finding the atom in the state 2 at time t into the 
Fermi’s Golden Rule [6] and can be expressed as 
(17): 
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Using Fermi’s Golden Rule in (17), one can to de-
rive the selection rules for any electric dipole 
transition resulting into a transition moment [5] 
expressed as (18): 
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In (18), the equivalent value, μ12 must be nonzero 
if the transition is to allowed; otherwise, its for-

bidden. Therefore, the dipole moment operator 
for two particles which have charges ±e is 
μ(r)=er. Its components will be expressed as 
(19): 
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Finally, to determine the selection rules for elec-
tronic transitions in the hydrogen atom [11], it is 
required that (20) be evaluated to obtain the se-
lection rules for n, ℓm and mℓ which are 

anythingn   , 1 , 1,0  m : 
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METHODOLOGY 
 

Materials 

The following were used to ensure success of this 
investigation: Computer; Vernier interface; 
Vernier spectrometer with USB cable; fiber optic 
cable for the spectrometer; voltage sensor LED 
exciter box; collection of LED’s; labels or masking 
tape; and an alternative – Use a Spectroscope to 
determine wavelength among others. 

Procedure 

A LED was chosen and inserted into the exciter 
box to ensure that it completes the circuit with 
the longer leg connected to the red wire and to 
the internal resistor in the correct polarity. A fi-
ber optic cable was attached to the spectrometer 
and connected to a computer using a USB cable 
enabled to run Logger Pro software. The intensi-
ty was adjusted so as not to be too low or too 
high using the distance from the tip of the cable 
to the LED. Both the peak and maximum wave-
length of the LED and the color of the LED’s light 
were recorded in Table 1.  

 

Table 1 – Experimental calculated Planck’s constant 
Wavelength 

(nm) 
Potential 

(volts) 
Planck’s Constant 

(Js) 
564 2.00 6.02 x 10-34 
591 1.92 6.07 x 10-34 
594 1.96 6.20 x 10-34 
610 1.87 6.08 x 10-34 
618 1.88 6.19 x 10-34 
625 1.84 6.12 x 10-34 
627 1.83 6.12 x 10-34 
635 1.83 6.20 x 10-34 
646 1.66 5.73 x 10-34 
685 1.97 7.21 x 10-34 

 

This was repeated for each of the available LED’s. 
The spectrometer was then unplugged from the 
computer and instead a voltage sensor into a 
Vernier interface. Finally, the mode of data collec-
tion was changed from “Time Based “to “Events 
with Entry” and then run. Thereafter, “Connect 
Points” was disabled on the Graph Options menu 
and then run using a computer. 

Lastly, the wavelength of unknown LED could be 
determined if proposed to be determined.  



Traektoriâ Nauki = Path of Science. 2017. Vol. 3, No 10  ISSN 2413-9009 

Section “Physics”   2011 

RESULTS AND DISCUSSION 

The purpose of this study was to determine 
Planck’s constant using the energy needed to ex-
cite free electrons in a light emitting diode. In this 
work, an electric current was used to excite elec-
trons and the corresponding energy was meas-
ured using a voltmeter as it was emitted. Planck’s 
constant was then calculated by substituting the 
obtained frequency and energy from the voltme-
ter in the relationship, E = h. A LED’ emitting 
red, orange, yellow and yellow-green and green 
color was also tested but the results are available 
elsewhere. The results were tabulated in Table 1. 

Based on these findings of Planck’s constant, 
Zener tunneling was proposed to be analyzed 
based on this semi classical model. In Zener di-
odes, an electron can jump to new band energy 
as explained by classical models. It was further 
proposed that this work can be extended to ex-
plain any change and causes that can cause a ruin 
on the Bloch oscillation since according to 
Marder's [1] the tunneling amplitude based on 
the WKB approximation, the amplitude can be 
determined from (21): 
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Since (21) is an exponential function with 1/e as 
the amplitude, the 'e-fold' point [8] can be re-
duced to (22): 
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Thus, the size of atomic fields [12] may equally 
be explained and be determined using the 
Planck’s constant as implied in (23) through 
Zener tunneling as: 
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Hence, the electric field can be found similarly 
using an electron orbiting at the Bohr radius [11] 
around a proton or nucleus.  

 

CONCLUSION  

Planck’s constant was determined by measuring 
the energy emitted by a selected number of light 
emitting diodes. A spectrometer was used to 
measure the wavelength of the light emitted by 
each LED. A measure of voltage drop across each 
light emitting diode was used to Planck’s con-
stant by relating it to the energy ab-
sorbed/emitted by the diodes through calculat-
ing it from the wavelength and voltage. It was 
found to be approximately similar to the theo-
retical value whereby it was concluded that the 
proposed method can be used to determine the 
wavelength of light emitted by unknown LED. 
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