Warianty tytułu
Własności wybranych miar nierównomierności opartych na kwantylach i ich zastosowanie w analizach rozkładów dochodów według makroregionów w Polsce
Języki publikacji
Abstrakty
Quantiles of income distributions are often applied to the estimation of various inequality, poverty and wealth characteristics. They are traditionally estimated using the classical quantile estimator based on a relevant order statistic. The main objective of the paper is to compare the classical, Huang-Brill and Bernstein estimators for these measures from the point of view of their statistical properties. Several Monte Carlo experiments were conducted to assess biases and mean squared errors of income distribution characteristics for different sample sizes under the lognormal or Dagum type-I models. The results of these experiments are used to estimate inequality, poverty and wealth measures in Poland by macroregion on the basis of micro data originating from the Household Budget Survey 2014.
Kwantyle rozkładu dochodów są wykorzystywane do szacowania różnorodnych miar nierówności, analiz ubóstwa i bogactwa gospodarstw domowych. Najczęściej są one szacowane z użyciem klasycznego estymatora, będącego statystyką pozycyjną odpowiedniej rangi. Głównym celem pracy jest porównanie własności klasycznego estymatora kwantyla z własnościami estymatorów zaproponowanych przez M.L. Huanga i P.H. Brilla oraz Bernsteina. W celu zbadania obciążeń i błędów średniokwadratowych estymatorów kwantyli i miar nierówności opartych na kwantylach przeprowadzono eksperymenty Monte Carlo, rozważając różne liczebności prób i różne rozkłady. W pracy przedstawiono wyniki badań dla populacji o rozkładach lognormalnym i Daguma, które najczęściej charakteryzującą dochody gospodarstw domowych. Wyniki eksperymentów symulacyjnych wskazują, że spośród rozważanych estymatorów najlepsze własności ma estymator Bernsteina, dlatego został on wykorzystany do oszacowania miar nierówności dochodowych, ubóstwa i bogactwa w Polsce w 2014 r. z uwzględnieniem podziału kraju na makroregiony. Analizy przeprowadzono na podstawie danych pochodzących z badania budżetów gospodarstw domowych prowadzonego przez Główny Urząd Statystyczny.
Czasopismo
Rocznik
Numer
Strony
51-67
Opis fizyczny
Twórcy
autor
- Uniwerystet Łódzki, Instytut Statystyki i Demografii, Katedra Metod Statystycznych, ul. Rewolucji 1905 41/43, 90-214 Łódź, Poland, jedrzej@uni.lodz.pl
autor
- Uniwerystet Łódzki, Instytut Statystyki i Demografii, Katedra Metod Statystycznych, ul. Rewolucji 1905 41/43, 90-214 Łódź, Poland, pekasiewicz@uni.lodz.pl
Bibliografia
- Arcagni, A. (2016) “On the Decomposition by Sources of the Zenga 1984 Point and Synthetic Inequality Indexes”. Statistical Methods & Applications 26 (1): 113–33, https://doi.org/10.1007/s10260-016-0360.0.
- Brzeziński, M. (2014) “Statistical Inference for Richness Measures”. Applied Economics 46 (14): 1599–1608, https://doi.org/10.1080/00036846.2014.880106.
- Greselin, F., Pasquazzi, L. and Zitikis, R. (2013) “Contrasting the Gini and Zenga Indices of Economic Inequality”. Journal of Applied Statistics 40 (2): 282–97, https://doi.org/10.1080/02664763.2012.740627.
- Harrell, F. E. and Davis, C. E. (1982) “A New Distribution-Free Quantile Estimator”. Biometrika 69: 635–40, https://doi.org/10.1093/biomet/69.3.635.
- Huang, M. L. and Brill, P. H. (1999) “A Level Crossing Quantile Estimation Method”. Statistics & Probability Letters 45: 111–19, https://doi.org/10.1016/s0167-7152(99)00049-8.
- Jędrzejczak, A. (2012) “Estimation of Standard Errors of Selected Income Concentration Measures on the Basis of Polish HBS”. International Advances in Economic Research 18 (3): 287–97.
- Jędrzejczak, A. (2015) “Asymptotic Properties of Some Estimators for Gini and Zenga Inequality Measures: a Simulation Study”. Statistica & Applicazioni 13: 143–62.
- Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken, New Jersey: John Wiley and Sons.
- Panek, T. (2011) Ubóstwo, wykluczenie społeczne i nierówności. Teoria i praktyka pomiaru [Poverty, social exclusion, and inequality. The theory and practice of measurement]. Warsaw: SGH.
- Peichl, A., Schaefer, T. and Scheicher, Ch. (2008) “Measuring Richness and Poverty: A Micro Data Application to Europe and Germany”. IZA Discussion Paper 3790, http://ftp.iza.org/dp3790.pdf (accessed: 11 June 2018).
- Pekasiewicz, D. (2015) Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach społeczno-ekonomicznych [Order statistics in estimation procedures and their application in socio-economic research]. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
- Zieliński, R. (2006) “Small-Sample Quantile Estimators in a Large Nonparametric Model”. Communications in Statistics Theory and Methods 35: 1223–41, https://doi.org/10.1080/03610920600692656.
- Zenga, M. (1990) Concentration Curves and Concentration Indices Derived from Them, Income and Wealth Distribution, Inequality and Poverty. Berlin: Springer-Verlag, pp. 94–110.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-35efb1c5-1a59-43bd-923f-5fed3d11c9a9