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Application of the simple least mean squares (LMS) adaptive filter of to 
the Warsaw Exchange Market (GPW) has been analyzed using stocks 
belonging to WIG20 group as examples. LMS filter has been used as a binary 
classifier, that is, to forecast the sign of changes in the (normalized) stock 
values. Two kinds of data has been used, namely, the differenced and double-
differenced normalized close values of stocks. It has been shown that while 
the predictive power of LMS filter is virtually zero for the differenced series, 
it rises significantly in the case of double-differenced series for all analyzed 
stocks. We attribute this to the better stationarity properties of the double-
differenced time series. 
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1. Introduction 

The problem of optimization of management of investments in financial 
markets belongs, needless to say, to those of paramount importance for quantitative 
financial sciences. One can distinguish three major stages in the optimization 
process. Firstly, one has to gather and organized the market data. It is difficult to 
overestimate the role of the information systems in performing those tasks.  
The second stage consists in some form of forecast of prize movement in the 
market, and the third stage is the development of an investment strategy. Our work 
can be thought of as a development belonging to the second stage. 
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Let us here observe that even the strongest orthodox statements condemning 
technical analysis like that of Graham [Graham 2003] actually do provide some 
sort of forecast (e.g., respectable stocks of large companies will remain robust and 
will continue to grow). Thus, such or that predictive tool is always used.  

Let us notice here that the predictions of classical theories of time series 
(please see, e.g., [Hannan 1970, Anderson 1970]) provider forecasts for market 
data with unsatisfactorily high errors. Therefore, a natural need for other tools to 
analyze financial time series. 

One of the most popular forecasting tool in the realm of discrete stochastic 
processes are the filters, especially the Wiener (Wiener-Kolmogorov) [Kolmogorov 
1941, Wiener 1942] filter for stationary processes and the Kalman filter [Kalman 
1960] for non-stationary ones. As is well-known, the celebrated Wiener filter is 
used to produce an estimate of a target random process by linear time-invariant 
filtering of an observed noisy process. The most important assumptions which are 
to be fulfilled for the Wiener filter to work are the stationarity of the signal and 
noise spectra, and additivity of the noise. The Wiener filter minimizes the mean 
square error between the estimated random process and the desired process.  

The straightforward application of the Wiener filter to any time series is non-
trivial as it requires the statistics of the input and target signals to be known. 
Therefore, a less demanding device in the form of the least-mean-squares (LMS) 
filter has been developed [Widrow and Stearns 1985, Haykin 2002]. Its particular 
merit is that it converges to the Wiener filter provided that the investigated 

time series is linear and time invariant with stationary noise. What is more, it 
is very easy to implement numerically even in Excel (in this work we have used a 
home-made Python code). 

Twenty stocks of the Warsaw Exchange Market has been chosen to illustrate 
the results of the LMS application. Their advantage is that while not all of them 
belong to the most popular trading stocks, they all form the group of Polish „blue 
chips”, i.e. the WIG20 group. 

The main body of our work is organized as follows. In Section 2 we provide a 
short description of the LMS filter and our time series. Section 3 consists 
qualitative results regarding the performance of our filter. Section 4 contains the 
discussion and some concluding remarks. 

2. Least Mean Squares adaptive filter 

The Least Mean Squares filter in its normalized version is defined by the 
following algorithm. 

Let p be a positive integer and let m be a real number – they are the 
parameters of the algorithm to be chosen by the user. Let the weights w and a part 
of the observed signal x form vectors of the length p. We initialize the weight 
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vector 2 with zeros. Then, at each step of the discrete time t, t = p, p + 1, p + 2, . . . 
we form the vector x from the observed signals as 

x = [x(t − 1), x(t − 2), . . ., x(t − p)], 

compute the ”predicted’’ value y with the help of the scalar product of w and x, and 
the error e as the difference between the ”desired signal’’ d and prediction y. 
Finally, at each step t the weights are adjusted according to: w → w + m e x / Z, 
where Z is the norm of the vector x.  

In our case, the vector x has been formed for either once or twice-differenced 
normalized close values of the stocks. The normalization consist of subtracting the 
overall mean for a given stock and dividing by the standard deviation. Let u(t) 
denote the stock value normalized in the above way. Then the once-differenced 
signal value has been computed as b(t) = u(t + 1) − u(t), and the twice-differenced 
observed signal as c(t) = b(t + 1) – b(t). The vector x has been formed from either 
b(t) or c(t), and the so-called “desired” value d has, naturally, been equal to x(t). 

Let Tp denote the number of true positive results (i.e. both the desired signal 
and prediction are non-negative), Tn the number of true negative signals (i.e. both 
the desired signals and prediction are negative), Fp – the number of false positive 
results (y – non-negative, d – negative) and Fn – the number of false negative 
results (y – negative, d – non-negative). Then the standard performance measures: 
accuracy, precision, negative prediction value, sensitivity and specificity are 
defined as follows: 

Accuracy = (Tp + Tn) / (Tp + Fp + Fn + Tn); 
Precision (positive predictive value) = Tp / (Tp + Fp); 
Negative predictive value = Tn / (Tn + Fn); 
Sensitivity = Tp / (Tp + Fn); 
Specificity = Tn / (Tn + Fp). 

3. Results of calculations 

We have performed calculations for the securities traded in the Warsaw 
Exchange Market (GWP) belonging to the groups which has been used to calculate 
WIG20 index. These are: ALIOR, ASSECOPOL, BOGDANKA, BZWBK, 
EUROCASH, JSW, KERNEL, KGHM, LOTOS, LPP, MBANK, ORANGEPL, 
PEKAO, PGE, PGNIG, PKNORLEN, PKOBP, PZU, SYNTHOS, and 
TAURONPE. The following LMS parameters have been used: p = 100, m = 0.7 for 
once-differenced series, and p = 25, m = 0.2 for twice-differenced series. No 
attempt has been made to optimized the above parameters (they have been close to 
the optimal ones computed for the case of a stock - 06MAGNA -  not belonging to 
WIG20). The market data has been obtained from the portal bossa.pl [Bossa 2014]. 
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The results are contained in the following tables and figures. The three tables 
show examples for three arbitrarily chosen assets while the figures illustrate more 
comprehensive results for all WIG20 stocks. 

 
1. ALIOR (336 trading sessions) 
 

Table 1. Performance of LMS for the case of ALIOR stocks 

 Differenced series Twice-differenced series 
Accuracy 0.480 0.660 
Precision 0.509 0.654 
Negative predictive value 0.454 0.667 
Sensitivity 0.476 0.658 
Specificity 0.486 0.662 

 
2. ASSECOPOL (4116 trading sessions) 
 

Table 2. Performance of LMS for the case of ASSECOPOL stocks 

 Differenced series Twice-differenced series 
Accuracy 0.505 0.671 
Precision 0.532 0.681 
Negative predictive value 0.478 0.662 
Sensitivity 0.517 0.667 
Specificity 0.493 0.676 

 
3. BOGDANKA (1214 trading sessions) 
 

Table 3.  The same as in Table 1 but for the BOGDANKA stocks 

 Differenced series Twice-differenced series 
Accuracy 0.500 0.667 
Precision 0.532 0.659 
Negative predictive value 0.469 0.676 
Sensitivity 0.498 0.671 
Specificity 0.503 0.663 

 
All simulations leading to the above results has been performed using a home-

made program written in Python. As the numerics has been rather simple, no 
special numerical packages except of the module Numpy have been used. 
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Figure 1. Performance of LMS filter for WIG20 stocks: accuracy (please see main text). 

Shorter column – once-differenced price series; taller column: twice-differenced  
price series 

 
 
 

 
Figure 2. Performance of LMS filter for WIG20 stocks: precision (please see main text). 

Shorter column – once-differenced price series; taller column: twice-differenced  
price series 
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Figure 3. Performance of LMS filter for WIG20 stocks: negative predictive value (please 

see main text). Shorter column – once-differenced price series; taller column: twice-
differenced price series 

 
 
 

 
Figure 4. Performance of LMS filter for WIG20 stocks: sensitivity (please see main text). 

Shorter column – once-differenced price series; taller column: twice-differenced  
price series 
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Figure 5. Performance of LMS filter for WIG20 stocks: specificity (please see main text). 

Shorter column – once-differenced price series; taller column: twice-differenced  
price series 

4. Discussion 

Probably the most remarkable feature of the above results is the striking 
difference between the performance of LMS for once- and twice-differenced 
market data. Since all performance characteristics for the once-differenced signals 
are close to 0.5 (with exception of some values of precision), one can say without 
any doubts that the most naïve application of the LMS filter to forecast the stock 
market leads to defeat. On the other hand, the same characteristics for the case of 
twice-differenced series always exceed 0.6 and, in some cases, even 0.7.  
This suggests rather strongly that one of the most important conditions of 
applicability of the Wiener filter and adaptive filters associated with it is better 
fulfilled. The natural candidate is the  time-translation invariance of the series. We 
believe, however, the quite large values of accuracy of LMS in the case of twice-
differenced market time series is still somewhat astonishing (we would not expect 
it to reach 0.7) and deserves further study. 

In the case of once-differenced series we observe that the positive predictive 
values have been consistently larger than the negative ones while the accuracy 
being very close to 0.5. This, however, can be ascribed to the natural bias emerging 
from the fact the market grows and the series is non-stationary. 

One can ask a natural question what kind of conclusions follow from the 
above results concerning the management of portfolio in a stock market.  
Our answer is this: a good portfolio should be constructed from  predictable stocks, 
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that is, those for which the performance characteristics of a forecasting method   
(e.g. LMS filter) are relatively high. This, in particular, eliminates the stocks which 
are on the market not long enough, for then the accuracy of any type of forecasts is 
rather low.  

In our future work we plan to investigate the performance of other adaptive 
filters in the stock market and to compare various markets from this point of view. 
We believe that our work can be further developed as a part of a comprehensive 
system of gathering and analysis of the market data which would also include 
extensive databases and intelligent tools creating the investment strategies.  

REFERENCES 

[1] Anderson, T.W. (1970), The Statistical Analysis of Time Series, Wiley, New York. 

[2] Bossa (2014): http://bossa.pl/notowania/metastock/ 

[3] Graham B., Zweig J. (2003), The Intelligent Investor, Harper Collins, New York. 

[4] Hannan E.J. (1970), Multiple Time Series, Wiley, New York. 

[5] Haykin S., Adaptive Filter Theory, Prentice Hall, 2002. 

[6] Kalman, R. E. (1960), A New Approach to Linear Filtering and Prediction 
Problems, Journal of Basic Engineering 82 (1), 35–45. 

[7] Kolmogorov A.N, Stationary sequences in Hilbert space, (In Russian) Bull. Moscow 
Univ. 1941 vol. 2 no. 6, 1–40. 

[8] Wiener N., The interpolation, extrapolation and smoothing of stationary time series, 
Report of the Services 19, Research Project DIC-6037 MIT, February 1942. 

[9] Widrow B. and Stearns S.D. (1985), Adaptive Signal Processing, Prentice Hall, New 
York. 

 


