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Application of the simple least mean squares (LM&ptive filter of to
the Warsaw Exchange Market (GPW) has been analym#dg stocks
belonging to WIG20 group as examples. LMS filtes baen used as a binary
classifier, that is, to forecast the sign of changethe (normalized) stock
values. Two kinds of data has been used, nameayifferenced and double-
differenced normalized close values of stocks.a heen shown that while
the predictive power of LMS filter is virtually zeffor the differenced series,
it rises significantly in the case of double-difaced series for all analyzed
stocks. We attribute this to the better statiogapitoperties of the double-
differenced time series.
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1. Introduction

The problem of optimization of management of inmestts in financial
markets belongs, needless to say, to those of paratnimportance for quantitative
financial sciences. One can distinguish three majages in the optimization
process. Firstly, one has to gather and organizednarket data. It is difficult to
overestimate the role of the information systemsparforming those tasks.
The second stage consists in some form of foremagrize movement in the
market, and the third stage is the developmennhoheestment strategy. Our work
can be thought of as a development belonging ts¢hend stage.



Let us here observe that even the strongest orthsiddements condemning
technical analysis like that of Graham [Graham 20fi8ually do provide some
sort of forecast (e.g., respectable stocks of lagyapanies will remain robust and
will continue to grow). Thus, such or that predietiool is always used.

Let us notice here that the predictions of classicaories of time series
(please see, e.g., [Hannan 1970, Anderson 1970}))iqer forecasts for market
data with unsatisfactorily high errors. Therefamenatural need for other tools to
analyze financial time series.

One of the most popular forecasting tool in thdmeaf discrete stochastic
processes are the filters, especially the Wieneerfé/-Kolmogorov) [Kolmogorov
1941, Wiener 1942] filter for stationary processesl the Kalman filter [Kalman
1960] for non-stationary ones. As is well-knowne tbelebratedViener filteris
used to produce an estimate of a target randomegsoby linear time-invariant
filtering of an observed noisy process. The mogidrtant assumptions which are
to be fulfilled for the Wiener filter to work arde stationarity of the signal and
noise spectra, and additivity of the noi3ée Wiener filter minimizes the mean
square error between the estimated random proodshie desired process.

The straightforward application of the Wiener filte any time series is non-
trivial as it requires the statistics of the in@nd target signals to be known.
Therefore, a less demanding device in the formhefleast-mean-squares (LMS)
filter has been developed [Widrow and Stearns 18ffykin 2002]. Its particular
merit is that it converges to the Wiener filter yiced that the investigated

time series is linear and time invariant with sta#iry noise. What is more, it
is very easy to implement numerically even in EXaelthis work we have used a
home-made Python code).

Twenty stocks of the Warsaw Exchange Market has lseesen to illustrate
the results of the LMS application. Their advanta&g¢hat while not all of them
belong to the most popular trading stocks, theyaath the group of Polish ,blue
chips”, i.e. the WIG20 group.

The main body of our work is organized as follomsSection 2 we provide a
short description of the LMS filter and our timeries. Section 3 consists
qualitative results regarding the performance aof fiter. Section 4 contains the
discussion and some concluding remarks.

2. Least Mean Squares adaptivefilter

The Least Mean Squares filter in its normalizedsicer is defined by the
following algorithm.

Let p be a positive integer and let be a real number — they are the
parameters of the algorithm to be chosen by the uséthe weightsv and a part
of the observed signad form vectors of the lengtp. We initialize the weight
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vector 2 with zeros. Then, at each step of theelisdimet, t=p,p+ 1,p+ 2, ...
we form the vectox from the observed signals as

X=[x(t-1),x(t-2),...xt-p),

compute the "predicted” valugwith the help of the scalar productwfandx, and
the errore as the difference between the "desired sigrthland predictiony.
Finally, at each stepthe weights are adjusted accordingwo:» w + mex/Z,
whereZ is the norm of the vector.

In our case, the vectarhas been formed for either once or twice-diffeeghc
normalized close values of the stocks. The norrmatdin consist of subtracting the
overall mean for a given stock and dividing by #tandard deviation. Lai(t)
denote the stock value normalized in the above Wagn the once-differenced
signal value has been computedbét¥ = u(t + 1) — u(t), and the twice-differenced
observed signal aft) = b(t + 1) —b(t). The vectorx has been formed from either
b(t) or c(t), and the so-called “desired” value d has, nayraéen equal ta(t).

Let Tp denote the number of true positive results (iathtihe desired signal
and prediction are non-negativ@)) the number of true negative signals (i.e. both
the desired signals and prediction are negatie); the number of false positive
results ¥y — non-negatived — negative) and-n — the number of false negative
results y — negatived — non-negative). Then the standard performancesunest
accuracy, precision, negative prediction value,stieity and specificity are
defined as follows:

Accuracy= (Tp+Tn) / (Tp+ Fp+ Fn+ Tn);

Precision (positive predictive value)Tp / (Tp + Fp);

Negative predictive value Tn/ (Tn + Fn);

Sensitivity=Tp / (Tp + Fn);

Specificity=Tn/ (Tn + Fp).

3. Results of calculations

We have performed calculations for the securitiegled in the Warsaw
Exchange Market (GWP) belonging to the groups whia been used to calculate
WIG20 index. These are: ALIOR, ASSECOPOL, BOGDANKA&BZWBK,
EUROCASH, JSW, KERNEL, KGHM, LOTOS, LPP, MBANK, ORKGEPL,
PEKAO, PGE, PGNIG, PKNORLEN, PKOBP, PZzZU, SYNTHOSnhda
TAURONPE. The following LMS parameters have beesdug = 100,m= 0.7 for
once-differenced series, ang=25, m=0.2 for twice-differenced series. No
attempt has been made to optimized the above ptaesr{they have been close to
the optimal ones computed for the case of a st@8MAGNA - not belonging to
WIG20). The market data has been obtained fronpdinel bossa.pl [Bossa 2014].
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The results are contained in the following tabled figures. The three tables
show examples for three arbitrarily chosen asséitewhe figures illustrate more

comprehensive results for all WIG20 stocks.

1. ALIOR (336 trading sessions)

Table 1. Performance of LMS for the case of ALIOR stocks

Differenced series Twice-differenced series
Accuracy 0.480 0.660
Precision 0.509 0.654
Negative predictive value 0.454 0.667
Sensitivity 0.476 0.658
Specificity 0.486 0.662

2. ASSECOPOL (4116 trading sessions)

Table 2. Performance of LMS for the case of ASSECOPOL stock

Differenced series Twice-differenced series
Accuracy 0.505 0.671
Precision 0.532 0.681
Negative predictive value 0.478 0.662
Sensitivity 0.517 0.667
Specificity 0.493 0.676

3. BOGDANKA (1214 trading sessions)

Table 3. The same as in Table 1 but for the BOGDANKA stock

Differenced series Twice-differenced series
Accuracy 0.500 0.667
Precision 0.532 0.659
Negative predictive value 0.469 0.676
Sensitivity 0.498 0.671
Specificity 0.503 0.663

All simulations leading to the above results hasngerformed using a home-
made program written in Python. As the numerics besn rather simple, no

special numerical packages except of the modulepgyumave been used.
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Accuracy

Figure 1. Performance of LMS filter for WIG20 stocks: acatygplease see main text).
Shorter column — once-differenced price serietertablumn: twice-differenced
price series

Precision

Figure 2. Performance of LMS filter for WIG20 stocks: preois (please see main text).
Shorter column — once-differenced price serietertablumn: twice-differenced
price series
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Negative predictive value
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Figure 3. Performance of LMS filter for WIG20 stocks: negatpredictive value (please
see main text). Shorter column — once-differenaézkseries; taller column: twice-
differenced price series

Sensitivity

Figure 4. Performance of LMS filter for WIG20 stocks: seisiy (please see main text).
Shorter column — once-differenced price seriefertablumn: twice-differenced
price series
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Specificity

Figure 5. Performance of LMS filter for WIG20 stocks: spéditfy (please see main text).
Shorter column — once-differenced price seriefertablumn: twice-differenced
price series

4. Discussion

Probably the most remarkable feature of the abeseilts is the striking
difference between the performance of LMS for onaed twice-differenced
market data. Since all performance characteristicshe once-differenced signals
are close to 0.5 (with exception of some valuepretision), one can say without
any doubts that the most naive application of tMSLfilter to forecast the stock
market leads to defeat. On the other hand, the shaecteristics for the case of
twice-differenced series always exceed 0.6 and,séme cases, even 0.7.
This suggests rather strongly that one of the miogiortant conditions of
applicability of the Wiener filter and adaptivetdits associated with it is better
fulfilled. The natural candidate is the time-triati®n invariance of the series. We
believe, however, the quite large values of acqumdd-MS in the case of twice-
differenced market time series is still somewhabr@ishing (we would not expect
it to reach 0.7) and deserves further study.

In the case of once-differenced series we obséwakethe positive predictive
values have been consistently larger than the iveganes while the accuracy
being very close to 0.5. This, however, can beilasdrto the natural bias emerging
from the fact the market grows and the series iisstationary.

One can ask a natural question what kind of coiahgsfollow from the
above results concerning the management of partfagi a stock market.
Our answer is this: a good portfolio should be tmresed from predictable stocks,
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that is, those for which the performance charesties of a forecasting method
(e.g. LMS filter) are relatively high. This, in p@ular, eliminates the stocks which
are on the market not long enough, for then theracy of any type of forecasts is
rather low.

In our future work we plan to investigate the parfance of other adaptive
filters in the stock market and to compare varimaskets from this point of view.
We believe that our work can be further developed gart of a comprehensive
system of gathering and analysis of the market @dtegch would also include
extensive databases and intelligent tools credtiegnvestment strategies.
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