Zawartość
Pełne teksty:
Warianty tytułu
Abstrakty
Contents
Introduction.................................................................................................................... 3
1. Preliminaries (topology & measure).................................................................... 3
2. Problems and the theorem.................................................................................... 7
3. Preliminaries (abstract groups, Cartesian products)....................................... 9
4. Preliminaries (automorphisms, duality theory).................................................. 13
5. Compact groups....................................................................................................... 15
6. Theorems on the groups $D_p$........................................................................... 18
7. A decomposition of compact groups.................................................................... 27
8. Groups in which all compact topologies are isomorphic................................ 33
9. The class M............................................................................................................... 40
10. Proof of the Main Theorem (groups of the class M)........................................ 42
11. Proof of tho Main Theorem (reduced groups).................................................. 47
12. Proof of the Main Theorem (conclusion)........................................................... 48
References.................................................................................................................... 57
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
38
Liczba stron
58
Liczba rozdzia³ów
Opis fizyczny
Rozprawy Matematyczne, Tom XXXVIII
Daty
wydano
1964
Twórcy
autor
Bibliografia
- [1] J. Braconnier, Sur les groupes topologiques localement compacts, Journal de Math. Pures et Appliquées 27 (1948), pp. 1-85.
- [2] L. Fuchs, Abelian Groups, Budapest 1958.
- [3] P. Halmos, Measure Theory, New York 1950.
- [4] S. Hartman et A. Hulanicki, Les sous-groupes pures et leurs dual, Fund. Math. 45 (1957), pp. 71-77.
- [5] A. Hulanicki, Algebraic characterization of Abelian divisible groups which admit compact topologies. Fund. Math. 44 (1957), pp. 192-197.
- [6] A. Hulanicki, Algebraic structure of compact Abelian groups. Bull. Acad. Pol. Sci. VI (1958), pp. 71-73.
- [7] A. Hulanicki, On cardinal numbers related with locally compact groups, Bull. Acad. Pol. Sci. VI (1958), pp. 67-70.
- [8] I. Kaplansky, Infinite Abelian, Groups, Ann Arbor 1954.
- [9] I. Kaplansky, Projective modules. Annals of Math. 68 (1958), pp. 372-377.
- [10] Л. Я. Куликов, Обобщенные примарные группы I, Tруды Moc. математического Общ. I (1952), pp. 247-326.
- [11] J. Łoś, Abelian groups that are direct summands of every Abelian group which contains them, as pure subgroups, Fund. Math. 44 (1957), pp. 84-90.
- [12] П. С. Понтрягoин, Непрерыеные группы, Москва 1954.
- [13] K. Urbanik, On the isomorphism of Haar measures. Fund. Math. 46 (1959), pp. 277-284.
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.desklight-1c9e05fe-bb36-458a-a362-2dbb98c9a845
Identyfikatory
Kolekcja
DML-PL
![](images/dnone.gif)