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Introduction

By a topology in a group G we mean a family v of gubsets of @ such
that G becomes a topological space with the class of open sets v and such
that the group operation zy~' is a continnous function of two variables (1).
In other words, a topology in a group G is a topology in the set & such
that G becomes a topological group.

We say that a topology 7 in a group @ is compact if the topological
space obtained by introducing the topology 7 in @ is compact.

Usually a given. infinite group admits more than one compact topol-
ogy. Hence a natural question to ask what are the relations among
different topologics in a given group.

In this paper wo confine ourself to considering only special aspect
of this rather wide problem. I'irst of all we consider only Abelian groups
and only compact topologies in them. In this case the problem of the
algebraic structure of groups which admit compact topologies was for-
mulated by I. Kaplansky [8] and solved in [4] and [5]. Here we give
the description of the Abelian groups which have exactly one compact
topology and those for which any two compact topologies define the
same (up to continuous isomorphism) topological group. The theorems
on the algebraic structure of compact groups as well as the theorems
we have just mentioned will serve us in the proof of the main theorem
of this paper (sce scction 2) concerning the relations among various
invariant measures defined in a group G on various o-fields of subsets
each being geneorated by a compact topology in @. The investigations
of this kind had boen started by J. Lo$§ and treated by several authors
afterwards.

1. Prcliminaries (topology & measure)

'We rosorve thoe following notation: {a;: teT} denotes the set of ele-
ments a;, teT', (@D the sequence of not necessarily distinct elements
@, teT', gp{a,: teT} the group gencrated by a;, teT, and m{a;: tel} the
modulo over tho ring of p-adic integers generated by elements a;, t¢T.

If ¢ is a mapping of a sct 4 into B, then the image of an element

(1) Wo do not distinguish betwoon equivalent topologies, i.e. between every
two topologies such that for each set ¥V of one of them there exists o set W of the
other contained in V.
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acAd by the mapping ¢ we denote by ap. We reserve the notation ¢(a)
only for the case when B is the set of real numbers.

IfA, B, 0, ...are families of subsets of a set X, thenby [4, B, C,...],
we denote the least o-field containing all the families 4, B, C,... We
say that the sets belonging to the families 4, B, C, ... generaie the o-field
[4,B,0,...L.

Let = be a topology in a group @, then by @, we denote the topo-
logical group defined by G and 7.

LemMMA 1.1. The family T of the compact topologies of a group G has
cardinal < 28.

Proof. If @ is finite, then there is nothing to prove. If @ is infinite
and 7 is a compact topology in @, then there exists a base & = {U} of
gets belonging to z such that

r={V:V=UU, 4C %)
Ued

and @ > %. Thus the cardinal of 7' is not greater than the cardinal m
of the family of the families of cardinal < < G of subsets of B, whence
o (26 & _ of

It was proved in [7] that

1.2. Tor each compact topology t in a group G there emisis a famzl ]
% such that each open set 18 a union of scts of the family & and that ¥ -a

By the class of Baire sets defined by a compact topology 7 in a group
G we mean the least o-field of subsets of G containing the closed (com-
pact) subsets ¢ of the form

C=V: for some V;ez.

el
We denote it by 4..

LeMMA 1.3.. For each compact topology t in an infinite group G we
have .93 <@.

Proof. For v we select the family # the eoxistence of which 1.2
nggerts. If C is one of the compact sets that generates &£,, then

- QYT = A YT,

n n-l iy

where UM e & and 6 is a finite set. Hence the family of the compact sets
generating &%, has cardinal at most %0 and hence

B, = (B = F* < 27 = @,
a8 required.
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By the Haar measure induced by a compact topology z in a group
¢ we mean the regular invariant measure u, defined on the o-field of
Baire sets &, such that for each Ver~2, we have u (V) >0 and p,(¢)=1.

For each compact topology t of a group G the Haar measure exists
and i unique (see e.g. [3], p. 263).

For each compact topology 7 in a group G we denote by £ the family
of the Baire sets of positive Haar measure u,.

LeMMA 1.4, For each compact topology © in an _infinite group G every
set M of the family B has the cardinal M = G

The proof follows immediately from the well known theorem saying
that the set MM~' contains a set V belonging to 7. Since 7 is a com-
pact topology, @ = a,Vu...uqV for some a,,...,0,¢@. Hence G =
7 < ¥ <@.

Tor a group and a compact topology z in it we denote by B,, and
call the class of Borel sets, the least o-field containing r. Tvidently
%#.CB,. It is well known (see e.g. [3], p. 289) that the IHaar measure
p. can be extended uniquely from Z, to B, and that for each set A¢B,
there is a set M, such that AC M and p (M\A)=0.

TFor each compact topology 7 of a group @ we select a class & * of
subsets of & defined as follows:

Tor each set M <% wo chooae a class S(M) = {4} of Borel subsets

A of the set M, snch that S (M ) = M = @ and such that for each A S (M)
we have u,(A)>0. We define £;* putting

&= U 8(M).

Mea"

A measure u i§ a common extension of a family of measures {u;: t<T},
where for cach teT the measure u; is defined on a o-field B; of subsets of
a set X, if u is defined on a o-field B containing all the o-fields B, teT,
and for each MeB, we have u(M) = p(M).

A measure u defined on a o-field B of subsets of a group & is inva-
riant if for cach M eB and ae@ the set aM B and p(aM) = u(M).

Suppose that {u;: teT} is a family of measures such that for each
teT the measure y, is defined on -a o-field 4, of subsets of a set X and
there exists a common extonsion g of the measures gy, teT.

Wo say that the measures p, tel, are independent in the common
catension u, if for overy finite subset & of the set 7' and sets M;, Mye%,
ted, we have

w0 = [ ] w00
L

A set T of compact topologies in a group G we call semi-regular if

the family {z,: reT} has a common invariant extension.
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A set T of compact topologies in a group G we eall regular if the
family {u.: TeT} has a common invariant extension in which the meas-
ures u,, v<I, are independent.

Let G be a group and let v; and v, be two compact topologies in
it. The topological groups @, and @,, are called topologically isomorphic
if there exists an isomorphism

cp:GLtn"G

such that Veer, for any Ver, and Up~'et, for any Uev,. We then say
that the topologies 7, and t, are isomorphic and we write

tl‘P - Ta.

If v is a compact topology in a group G and ¢ an auntomorphism of
G, then
gr‘? = gw! .@:q) = g':qn qu7 = B'w‘

It follows from the uniqueness of the Haar measure that for each M %,
we have

pa (M) = peg(M,).

Measures u., y,, satisfying the above equality we call isomorphic. We
WIite . = g,

If T and 8 are two sets of topologies of a group G and for each top-
ology of one of the sets §, T there exists an isomorphic topology in
the other, then we say that the sets S and T are isomorphic.

If T is a set of compact topologies in a group & and £ is an arbit-
rary set, then a mapping

(T2): 2 >T

we call a system of topologies in the group G.

We say that a system (7"Q2) of topologies in a group @ is ¢somorphic
with a system (I''Q2) if for each (e there exists an automorphism e,
of the group & such that

(I'2)p, = «(T"'Q2) for any ceQ.

We say that a system (7'Q2) of topologies in a group G is regular if
it is a one-to-one mapping and the set T is rcgular.

If G is a group, r a topology in it and = a homomorphism of @ onto
a group H, then the family {V=: Vez} is a topology in H. We denote
it by =z, If 7 is compact, then z= is algo compact.

Let G be a group, = a topology in it and H a subgroup of & closed
in the topology z. Then the family {V~H: Vet} is a topology in H;
we denote it by 7 A H. If 7 is compact, then also v A H is compact.
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Let G be a compaet topological group and v its Haar ieasure. For
any subsets 4 of G the outer measure +*(4) of A is defined as the infi-
mum of »(M) for all Baire sets M of @ such that A C M. In order that
»*(A) =1 it is necessary and sufficient that A~M ¢ for any Baire
set M with »(M) > 0. Let A be a subset of G with »*(4) =1. Let 3
= {M*} be the family of all subsets M* of @ of the form M* = 4~ M ,

where M is a Baire sot. It is easy to see that #* is a o-field of subsets
of A and that »'(M*) defined on #* by »'(M*) = (M), where M* —
A~M and M is a Baire sot, is a measure on 2.

We close this seetion with a simple lemma which easily follows from
well known theoromns (sco e.g. [3], p. 26-29).

LeEMMA 1.5. Let E be a class of subsets of a set X. Suppose that E
oontains a subclass A such that

(i) for cach MeA we have X\McA,

(ii) for eaoch finite collection of sets M,, ..., M, of the class A we have
p"l M;eE,
i (iii) for keach finite collection pf disjoinl sets M,, ..., M, of the class
E we have ‘_U1M¢eE,

(iv) of My, M,,... i3 an ascending or descending sequence of sels
belonging to the class E, then QM.;eE or 15 M. eE, respectively.

Then the o-field generated by A 1is contained in E.

2. Problems and the theorem

In connection with his investigations on the foundations of the
theory of probability J. Lo§ has formulated the following problem:

Given a group and two compact lopologies ©,, vy in it. Does there exists
@ common ewtension of the two Haar measures u, and u.?

The answer to this problem is *“No”. P. Erdés and K. Urbanik proved
that if I is the group of rotations of the unite circle and M a subset
of K such that M is of the first category and has Lebesgue measure equal
2r, then there exists an automorphism ¢ of K such that Mp = K\M.
Thus the Lebesgno measuro u and the measure up have no common exten-
sion, for u(M) = 2r and up(dM)= u(Mp) = p(E\M) = 0.

The result of P. Erdds and K. Urbanik called attention to the neces-
sity of looking for some other approches to the problem of Loé which
would provide positive answers.
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The idea which turned out to be most fruitful belonged to S. Hart-
man. He pointed out that from the purely probabilistic point of view
the existence of a common extension of two Iaar measures, each de-
fined by a compact topology in a group G is of less importance than the
existence for given compact topologies 7, and 7, in G 2 measure algebra
defined by an invariant measure in the group ¢ and containing isomorphic
images (in the sense of measure algebras) of the measure algebras de-
fined by the classes %, , #., and the measures u;, ut,, respectively. The
question of the existence of such a measure algebra was studied by
K. Urbanik. In [13] he proved the following result:

Let G be an infinite group and T the family of the compact topologics
in G. We pick a topology t, of the family T. Then for each v«T the measure
algebra defined by the class &, and the measure uv, containg an isomorphio
image (in the sense of measure algebras) of the measure algebra defined by
the class &, and the measure u,.

Still the nature of the isomorphisms in question was not known.
It was not even known whether for each compact topology in a group @
there exists an isomorphism of this kind induced by a one-to-one map-
ping of @& onto itself. It was not known any example of a group and two
different compact topologies in it such that the corresponding Haar
measures have a common extension, either.

If we confine our considerations to the Abelian groups, then the
following will lead us to the formulation of the answer to all these ques-
tions.

Let @G be an Abelian group and I' the set of all compact topologies
in it. If one look on a topology of G from the point of view of the topo-
logical group it defines, then the set T' is naturally divided into classes
of topologies which define the same topological group, i.e. into classes
of isomorphic topologies. P. Erdos and K. Urbanik have found two
topologies in the circle that belong to the same class and the Haar measu-
res induced by them do not have common extengion. We shaw that after
a suitable selection of topologies each from a different class the cor-
responding IMaar measures do have a common extension.

We formulate the above result in an equivalent form in the following

MAIN TAHEOREM. Let G be an Abelian group and T the family of the
compact topologies in it. Then for each teT there caisls an automorphism
@, of G such that the family {u.p.: veT} of the Haar mecasures has a com-
mon tnvariant extension.

In other words,

If @ is an Abelian group and T the set of the compact topologies in G,
then there exists a semi-regular set of compact topologics in G isomorphic
to T.
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3. Preliminaries (abstract groups, Cartesian products)

IF'rom now on all groups aro additively written Abelian groups. We
shall use a great deal of the theory of Abelian groups. For the general
references wo sond the reader to the books [2] and [8]. Here we want
only to ostablish some notations and prove a simple lemma. ‘

We denote by C . the cyclic group of order p™, by € the group
of the roots of the unity of order p*, n =1, 2,..., by R the additive
group of rationals and by I, the group of p-adic integers. We denote
by , D G, tho direct sumn of groups @y, teT.

T

LeMMA 3.1. Lct & be a p-group and B a basic subgroup of it such that
@B is the direct sum of at least m C '8y with m > R,. Let

B = (o),
Then for each sct 2, there emists a subset N, of it such that ¥, <m and
for each group
B =D 20,
f=m] ae My, .
where M, is an arbitrary set between N, and 2,, the factor group G[B’
contains a divisible group H, which is the direct sum of m copies of C .

Lemma 3.1 is an immediate consequence of the following fact no-
ticed by J. Lo§:

If G is a group, N a subgroup of G and H an arbitrary subgroup of
G|N with B > R, then there cwists a subgroup N, with N, C N and N.<H
such that for any group N’ such that NoCN'C N there is a subgroup
H' of G|N' isomorphic with H.

Proof. Let A

H = U(a'a+N )y

ael2
where a,, aef2, is a selection from the cosets of G/N belonging to H.
We put '
ND = gp {a’al+a‘un_a‘03: Qyy A2y GEGQ}AN-

If N’ is any group such that N,CN'CN and
H = U(a,+X)

aefd
then the mapping
p: H—>H'
defined by
(a.+N)p = a,+ N

is an isomorphism of H onto H'.
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The Oartesian product of a family {@,: a<Z} of groups we denote
by J*G..

ask

For every acE we denote by =, the projection on the group G, in
G,
aesS

If 7, is for each aeZE a compact topology of the group G,, then the
product topology consists of the unions of the sets

L]

V = Va|+"'+Vuk+

Ga’ Valeruv ﬂ.g(E,

as E—{ay, ..., ay}

and is a compact topology of the group }*G.. We denote it by 2 ..

ael ael
¥ £={1,2}, we then write t,X 7, for 217,

acl
‘We have

Ta=(P1)ANQ, = (P )m, aek.

as g acs

Let {X,: aeZ} be a family of sets, for each ae =, let 4, be a o-field
of subsets of X, and u, 2 normed measure defined on %, in X,. Then
the direct product measure defined in the product # X, on the o-field

ael

?Qa = [{?M,)( P Xa: 3< 80’ 665, ﬂluega}]a

asg aed as\J

we denote by 2 u,.

ael
If X, is for each aef a group and z, a compact topology in it, then

PB, =4, and Ppu,_=p, where 1= 271,
ass

ael ael

3.2. For each aeZ let X, be a set, B, a q-field of subsets of X, and p,
a normed measurc on Z,. If v, denotes for each aeE the measure defined
in P X, on the cylinders

ad®

Ga = M.,X 2 Xﬁ, Mafga,
pes\(0)

by the equality
”a(on) = .un(Ma))

then the measure 2 p, is a common emlension of the measures v, in which
aes

they are imdependent.



3. Preliminaries (abstract groups, Cartesian products) 11

Let & Do a directed set. To each aeZ we correspond a set X, and
a family of o-ficlds #(¢, a), teT,, of subsets of X,. Further, suppose that
on each o-fiold .9«?( , a) a normed measure ,ua is defined and that for a fixed
a the measures p!, teT,, have a common extension 4o defined on the

o-field
%, = [uLg Z(t, a)l,.

Suppose, in addition, that the measures yf,, teT,, are independent in their
common extension u,.

Now, for any pair a > f of elements of £ we suppose that there
exists a mapping y,, of T, onto T, and that the mappings y,, and the
gets T',, a e.:, form an inverse system whose inverse limit exists. Denote
it by 1. Lot a be the canoni¢c mapping of T onto T,. It is plam that

for each ae& the measure u, = &2 u, defined on the o-field B, = P Ay
P>a p>a

is a common extension of the measures xt = 2 uff, teT, defined on
g>a
the o-fields Z(t, a) = 9 A (18, B), teT, respectively.

LEMMA 3.3. Let be a finite subset of T and for some aeZ let A = {8}
be a partition of I' such that for each f >a and 6', 8" 4
(3.3) OB = 6"f implies & = o".
If M, ts for each teF a sct belonging o B(t, a), then the sels M, = (‘]M,,

ded, are independent, thal is

(3.4) ,u,,(ﬂM,,) = []2.(M))  for each 4'C 4.

ded’

Proof. Suppose first that the sets M,, teF, are cylinders of the
form

(3.0) M; = M}®x Py, where Py, =2 X, for some f(i)eE,
1?3(‘1) :
MO B(1B(1), B(2)-
Now we define a family 7 of sets y as follows:
= {y: t, 8¢y it and only if ¢,s¢F, and (1) = f(3)}.

For cach y the common value for f(f) with ey we denote by B£(¥y).
Obviously ¥ is a partition of F. For each ye¢¥ the set M, = () M,

tay
i8 a cylinder of the form

MV = Mz(w) X.Pp(w), where Mﬁ(?) Ggp(v) .
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Hence, since x, is the product measure of the measures us, 8 > a, we
have

(3.6) Bo( N\ M) = [] (M) for every P'C ¥,
pey’

pe'd’
For each ype¥ we define a partition I', of y putling
(3.7) I, = {y: s,tey if and only if 5,%ep and s =t for B = f(y)}.
It is plain that for different y, yel,, the sets (M) M{™ belong to different

ley

o-fields Z(iB, ), f = A(y). Then for each I',CI, we have
(3.8) pal ) VM) =[N N (MY X o))

?'P tey y(I‘ tey
= g ( ) ﬂ Mi)
y:!"w tey
= n.“ﬁ( ) (M) = n Ha (mMz)
-yd" -yeI'

Let & = U I',. By (38.6) and (3.8) we have

(3.9) w(N NM)=][] ,u,,(ﬂJm for every @' C @.

y¢¢ ll’y ”!m

It follows immediately from (3.7) and (3.3) that & is a refinement of the
partition 4. Hence for each deAd we have

é = Uy, where @° = {y: yC 8, ye®P}).
y¢¢

Let &, = (J 9. Obviously &, C &. Thus applying (3.8) for &' = &,
ded’

and @ = @ successively we get

(810) (O M) =m0 N M) = [[E(OM)

yed) Ley ded; Loy
=T] Hu.mﬂm =[]m(N N = [ ] (20
bed’ y“,, ded’ -yu{J ded’

a8 required.

Suppo_ge now that the sets 1f;, teF, are arbitrary cylinders such
that M,;e#(t, @). Then for each teFF

M, = ﬂ—"ﬂ ’
where L is a finite set, M} belongs to #(f, a) and is of the form
(3.11) M{=Mlix ? X,, Mic#(B,,p).

f=a

PY-N
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Moreover, for each I C I

mal VM) = [ [ (N 2.
tel L  leF

Thus equality (3.4) for the sets M;, teF, being arbitrary cylinders
belonging to #(i, a) respectively, follows at once from the last equality
and (3.10) applied for each ¢, i¢L, to the sets M}, teP.

Tor an olement ¢, bolonging to I and o collection of arbitrary but
fixed cylinders N,eZ(t, a), teI'\{t,}, let E, be the family of sets M, e
%(ty a) for which cquality (3.4) holds provided M, = N, for te F\{t,}.
The previous reasoning shows that if A4, is the family of the c¢ylinders
of the form (3.11) with £ = {,, then 4,C E,. A, is complementative and
the finite intersections of sets of A4, belong to E,. From the elementary
propertios of measure follows that the families 4, and E, satisfy also
conditions (iif) and (iv) of Lemma 1.5. Thus #(t,, a)C [4,],C E,.
Since the sets N;, teI’\{f,}, are arbitrary cylinders of the form.(3.11)
belonging to Z(t, a) respectively, we may repeat the above reasonning
for any %, e’\{,} considering the family E, of all the sets M, of (1, a)
for which (3.4_) holds provic_lgd M, = N, for te F\{t,, t,} and M, is arbi-
trary set of Z(i,, a). Thus #(t,, a) C E,. Repeating the same reasonning
suceessively changing every time the set N, for an arbitrary set of Z (¢, a)
we get after finitely many steps the proof of Lemma 3.3.

4. Preliminaries (automorphisms, duality theory)

The identity automorphism of a group G we denote by ¢|G. If G =

' @, and ¢, is for each eeS an automorphism of the group &,, then
ae s

the automorphism ¢ of the group G defined by the equality

<ma>a¢5(p = <marpa>at5) waEGa!
we denote by }™p,. We have gmn, = m,p, = m,p for each aeZ. If. 7, i3
adFE

for each aef a compact topology of G,, then

P (T.9.) = '@ru and P BryPa = (2 Pr,.)q"
ael ae s atS a3
If @ is a group, p an automorphism of it and H a subgroup of & such that
Hyp = H, then tho automorphism induced by ¢ in H we denote by ¢ A H.
'We now list some fundamental facts of the duality theory of Pon-
trjagin which will play most important role in the sequol.
The character group (with the standard topology) of a topological
group @ we denote by @. If G is an abstract group, by G we mean the
charactor group of the topological discrete group &.
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4,1, If a topological group @ is discrete, then G i3 compact, and wvice
versa, if @ i8 compact, then @ is discrete [12], p. 242).

4.2. If a topological group @ is locally compact, then G = G ([12],
p. 206).

4.3. The character group of a reduced compact topological group is
periodic (discrete) group ([8], p. b5).

4.4. The oharacter group of a divisible compact (or discrete) topologi-
cal group is torsion-free. The character group of a torsion-frec compact
(or discrete) topological group s divisible ([8], p. D).

4.6. If G., aeZ, are discrete topological groups, then

(S6)=3re.

aef ack

and for the character topology T in the group 2*@; we have T = Z 1., wher
ael as s :

1, ¢ for each aeZ the characier topology of the group G, ([12], p. 2569).

4.6. If @G is a locally compact topological group and H a closed sub-

group of it, then H ~ G|N, where N is a closed subgroup of @ and consti-

tutes the annihilator of the subgroup H, i.e. it consists of the characters whioh
PO

map H into zero. We have N =~ (G[H) ([12], p. 257).

4.7. The anmihilator of a pure closed subgroup of a compact (or diserete)
topological group G is a pure (closed) subgroup of @ [4].

4.8. If G is a discrete topological group and H a pure subgroup of it,
then P
@ = H+(G/H)

with (G//E) being closed in @ ([11] and [4], p. 75).

4.9. The character group of a discrete topological group isomorphio
with Cpeo 8 I, and the character topology in I, coincides with the p-adic
topology in I,. The character group of the group Opn is isomorphio with Cpyn.

4.10. Two compact topologies ., T, in 6 group G are isomorphio if
and only if @, =~ G,,. The group of the continuous awtomorphisms of a com-
pact topological group G is isomorphio with the group of the automorphisms
of the group @ (compare [1]).

4.11. If G 18 a discrcte (or compact) topological group which does not
contain any pure oyclic subgroup of order p", then G has the same property.

For, if ¢ is a pure cyclic subgroup of order p” of &, then by 4.7 its
annihilator M is a pure subgroup in the character group &G ~a. By 4.6
and 4.9 G/M =~ C ~ (, which implies that M is a dircct summand of
G and thus O is a cyclic pure subgroup of &, which is not possible.

4.12. If G i3 a compact group, then G = 2™, where m = é.
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5. Compact groups

As was proved in [6] and [6]
A group @ admits (at least one) compact topology if and only if

(i) @ = D4 3*D,, where p are prime integers;
P

(ii) D=:§.R‘+§ D Opo with 1. A =2™ m >R, 2. 4, is

udp
(5.1) finite or A, = 2", 3. A > A, for each p;
(i) Dp = 3" ¥ Crnd I*I;.
Wl orP 1P
n 0

5.2. For each compact topology in the group @ the mazimal divisible
subgroup D 18 closed in .

In what follows any group called D, will be understood to be of the
form (5.1), (iii).

By [8], p. 65, we have

5.3. For each compact topology t of a group @ of the form

G = Z’D,,
P
wé have T = P, \D,.

We consider next the problem of the uniqueness of the decompo-
sition (5.1). The question is to what extend the algebraic structure of
the group G defines the cardinals 4, 4,, T2, » =0,1,2,..., p =
2,3,5,...

It follows immediately from the uniqueness of the maximal divisible
subgroup of the group @ and the uniqueness of its representation, as the
sum of groups Cpo and groups of rationals, that the cardinals 4,4,
»=2,3,6,..., are unique. Similarly, since /D = }"D, and for any

P

two different primes p» and ¢ the group D, has no non-trivial homomozr-
phism into the group D,, the groups D, in the decomposition (5.1), (i)
are defined uniquely by the group 4. _

The situation with the cardinals I'%Z and IT? (n=1,2,...,
p=2,3,5,...) is somowhat more complicated. We first prove the fol-
lowing

LEMMA 0.4, If G is a group which admits (at least one) compact to-

pology, then the cardinals p"-':, n=1,2,..., p=2,3,8,..., are defined
uniquely by G. Hence, if the gemeralized continuum hypothesis is assumed,
then the cardinals I? (n =1,2,83,..., p =2,3,5,...) themselves are
unique.
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Proof. Since the groups D, in (5.1), (i) are defined uniquely by the
group @, for each prime p the set {z: pow =0, zeD,} = P, is also de-
tined uniquely by the group @ For each » =1, 2,3, ..., by (b.1), (iii),

we have
Py~p"D, = )" Cp=H.

uI‘p

Hence H is dofined uniquely and thus H = P s unique.

In general, the cardinals I, p = 2,3,5,..., are far from being n-
nique (see Corollary 6.13). However, as we shall prove later (Theorem
6.24), for each group @ having a compact topology there exists a decom-

14
position of the form (0.1) such that for each prime p the cardinal p'fo is
maximal ‘among the corresponding cardinals in various dccompomtlons of

the form (5.1) of the group G. Obviously the maximal cardinal p T i
unique.
The following lemma gives conditions on the group G under which

=D
for each prime p the cardinal p™® is unique:
LEMMA B.6. Suppose that there exists a decomposition of the type

(5.1) of the group G such that for each prime p all but a finite number of
the sets I'y, n=1,2,..., are empty. Then for each prime p the cardinal

p zs defined umquely by the group G. Hence, if the generalized continuum
hypothesis is assumed, the cardinals I} themselves are umique.

Proof. It follows from the assumption of the lemma that for each
prime p the maximal periodic subgroup P of the group D, in the decom-
position (5.1) of @ is of finite exponent (2). Hence P is a direct summand
of D, and the group

H=D,/P=)"L
A'cl"s’
is uniquely defined by the group @, since D, is unique. Consider the
group ¥ = H/pH. We have
r=>"c,.

l(f'p

s nf)
Thus F = p™, which completes the proof of the lemma, since F is u-
niquely deflned by the group D,.
We prove another lemma on the cardinals p" » with n =1, 2,
p=2,3,0,.

() A group is of finite ezponent n if for each olement z of the group nz = 0
and » is the least mteger for which nz = 0 for all elements z ol the group. A group
of finite exponent is called sometimes a group of bounded order; comp. [8).
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LeMMA 6.6. For a compact topology « in the group G Ut T, be the
p-component of the maximal periodic subgroup T of the group @.,. Let

5= 5 S

Rl .snﬁ

be a basio subgroup of the group T,. Then T, ~ D, and pﬁz’, _ p‘:ﬁ, "
1,2,..., for each dccomposilion of the type (5.1) of the group G.
Proof. Since T is pure in @, by 4.2 and 4.8, we have

(5.7) G0 = (5/})-@.

N
By 4.4 the group (@/I) is the maximal divisible subgroup of @ and,
by 4.3, T is reduced. Wo have

(5.8) T = )'T,
»

Let B, be a basic subgroup of the group T',. Since B, is pure in T, and
Tp/By is the direct sum of C .'s, by 4.8, 4.9 and 4.5, we have

oo

(6.9) T, =" Y0+ Y"1,

Rasl u.o,’: "

. , AN
Putting I = D, and (@,/T) = D', from (5.7), (5.8), 4.6, 4.4 and (5.9)
we obtain a decomposition of the type (5.1), with D’ and D, in place
of D and D,, respectively, of the group G. Henco by Lomma 5.4 we have
pﬁg = pT 71:, n=1,2,..., and by the uniqueness of the group .D, for
every prime p, D, ~T,.

LeMmMa 5.10. If a group G is of the form

G=)"D,,
»

where for each prime p the group D, is the direct sum of finitely many cyclic
p-groups and finitely many, say n,, groups of p-adic iniegers, then G has
evactly one compact lopology.

Proof. Tho group G has ovidently a compact topology = which is
the product topology of the discrete topologics in the cyclic groups and
the p-adic topologics in the groups of p-adic intcgers. We prove that
this is the only compact topology in @. For, lct = be a compact topology
in @. Theon, since @ is reduced, by 4.3, @, is periodic. Hence it is the dircet
sum of its primary p-components, i.c. @, = 3T, Hence, by 4.5, ¢ = T,

B g
v

Rozprawy Matematyczne XXXVIII 2
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By Lemma 5.6 T, = D,, and by 4.6 7 =2 (v A D,). Hence it is suffi-
»

cient to prove that for each prime p the topology T =7 AD, is equal
to the topology t, = 7 A Dp. To prove this we show first that the topolo-
gies 7, and 7, are isomorphic, this means that the character groups
19jD W and D,, rp Ore isomorphic (compare 4.10). The maximal perlo(hc
subgroup T of the group D, is finite, so it is closed in the topology 7,
We have

Dy /T =1 = Z'I“’

ial

Since I is reduced and torsion-free, by 4.3 and 4.4, we gct

I= ;‘c';w

Sinee, by 4.5 and 4.9, I—I-Z'I,, 21},, we have I/pl = p™ = p"

i=]

which, since n, is finite, gives m, = n,. Smce I is divisible, by 4.6, 4.5
. n . -
and 4.9 we get Dp; ~ T+ = T-};Z Cyeo. Hence, by 4.5 and 4.9, Dy,
=1

i l.)p.;.p. But since each homomorphisin of the group I, into a cyelic
p-group or the group I, itself is continuous in the p-adic topology of
I,, i.e. in the topology r,,/\I;, +=1,2,...,n,, cach outomorphism
of the group D, 15 continuous in the topology 7p. Thus, since 7, and 1,
are 1somorphlc, Tp = Tp.

6. Theorems on the groups D,

All modules we consider here are modules over the ring of p-adie
integers. It follows immediately from (5.1), (iii) that a group D, is a module.
I. Kaplansky showed in [6], p. 655, that

6.1. Buery group D, 18 a module complete in its p-adio topology.

IFFollowing Kulikoff [10] we call a submodule B of a module m a basie
submodule if

(i) B is a direct sum of cyclic modules;

(ii) B is a pure submodule of m;

(iii) m/B is a divisible module.

6.2. Every module has at least onc basic submodule ([10], p. 305).

6.3. Bvery basic submodule B of a module m i3 generated by a set A,
called basis of B, with the following properties:
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(i) For cach finile set 6C A we have m{s} = 3 m{w} (3);
zdd
(ii) m{A} is pure in m;

(iii) 4 48 @ maximal sct having properties (i) and (ii) ([10], p. 305).
Property (i) implics that m{d} = } m{z}.
xed

6.4. Lvery two basic submodules of a module are isomorphio ([10],
p. 309).
~ 8.5. The set of the infinite eyclic direct summands in a direct decom-
position into eyclic modules of a basio submodule B of a module m has car-
dinal equal o the number of the cyclio direct summands in a direct decom-
position into cyclic modules of the module m/m{T, pm}, where T is the
‘mawimal periodio submodule of the module m ([10], p. 308).

6.6. If m is a module complete in its p-adic topology, then m 48 equal
to the complction of any basio submodule of m ([8], p. B63).

It follows immediately from 6.6 that

8.7. Let my and mq be two modules each complete in its p-adic topology.
Let B, and B, be two basic submodules of m, and m, respectively. Then every
isomorphism of the modules B, and B, has the unique extension to an iso-
morphism of m, and m,.

Now we are going to define a class K of groups .D, which will play
an important role in the following

DEFINITION OF TIE CLASS K. We say that a group D, belongs to the
class K if and only if it can be represenied tn the form (5.1), (i) such that

(1) TP+ +T5+... > Ky
and
o d -
(ii) esther (a) I'f = Y I'Y or (b) there cxists an infinite set N =
fiml

{m: i =1,2,...} of positive integers such that I', . > Iz, and
for each positive integer n there is an element ny in the set N such
that I'y, > I'}..

As it will bo shown goon the clags I consists of the groups D, which
regarded as p-adic modules have basic submodules with a large number
of infinite direct smnmands in every direct decomposition into cyelic
modules. We shall prove also that each group D, is the direct sum of a
group of finite exponent and & group of the class K or it is the direct
sum of finitoly many groups of p-adic integors and finite cyclic groups.

First wo prove thoe following

—

(%) We recall that m{d, B, ...} denotes the p-adic module generated by the
elements of the sets 4, B, ...
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THEOREM 6.8. If a group D, belongs to the class K, then for any basic
submodule B of the module D, we have

B =T+EK,

where K is the direct sum of D, infinite cyclic modules.

The proof of the theorem is based on the following

LEMMA. Let (I: n=1,2,...} be a family of disjoint scts such that
the cardinals Fn satisfy condition (ii), (b) of the definition of the class K

provided I, = I'h for every n =1,2,... Let I' = | JI',. Then there exists

fle]

a set Q of cardinal of conststing of sequences & = (€p)er With & = 0 or

& =1 and having the following property:

(6.9) For every two sequences &, n of the set Q there emists an infinite set
{ny: ¢ =1,2,...} of positive integers such that for each t =1,2,...,
there exists an element &, in I, such that &, # Nep,*

Proof (*). By means of transfinite induction we construct an agcend-
ing sequence {2,>,.,, consisting of subsets 2, of the set 27 such that

each of them has property (6.9) and the set
U Q=9
acwy

has cardinal 2"" .
Let

Q) = {<& Dper : & = 1}

Ef for=some B < w; the sets Q,, a < §, are already defined and for
all 2, < 27, then for # being a limit-number we put
Qﬂ = U 'Qd'
a<p

For f = a+1 we congider two cases: (a) 5, < 27 for some inte-

ger n and (b) 5,, > 2™ for all integors n.
_ (a) By condition (ii), (b) of definition of the class I there exists an
infinite set of integers =;, ¢ =%, %+1,..., such that

2, < 2% < oy,

() As has been noticed by J. Loé, the lemma can be deduced from Tarski's
theorem on the number of independent subsets in o sot of o given cardinal, but
a more direct simple reasonning is at hand.
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Hence for cach Iy, th{ere oxists a sequence (e}) r,, consisting of zeros
and ones such that (s,)g,,-m¢9,,|1",,t, where by £2,|4, ACTI', we mean
the class of the partial sequences (7;)g4 for which (7)pref2,. We put

‘Qﬂ = Q,v {<e€>€er}’

where &, = eZ for éel'y,, 4 =k, k1, ... Obviously the set has property
(6.9).
(b) For oach positive integer » consider the set

.Q: = {{&Der: <£€>ECA“Q¢|A7 4 = GI'#}'

J=n

We have

roocooome
a0

O =9, .9F-1Q | Ty < 8, < 2F.

fmn

Hence the set 2., = {_J @ has cardinal less than 2T. We take an arbitrary

fleml
sequence & = (&) consisting of zeros and ones which does not belong

to £2.. It follows immediately from the definitions of the sets 27 and
9, that the set {¢}uQ, = 2, has property (6.9).

Proof of Theorom 6.8. Lot D,e K. Then D, has a decomposi-
tion of the type (8.1), (iii) such that the sets I}, n = 0,1, 2, ..., satisfy
either conditions (i) and (ii), (a) or (i) and (ii), (b) of the definition of the
clags K. We show that in both cases we have

(6.10) D, = D,/m(T,pD,},

where T' is the maximal periodic submodule of the module D,. This,
since D, is infinite, will give us the result by 6.5.

In the first case the cardinal I'7 is infinite and 5,, = 271, We have

D,/m{T,pDy} D D" 1) [pI}.

urg

Hence Dp/m[Z7, ;.l—):] > o = 1=)',,, a8 required.
In the case whon I'}, I'h, n =1,2,..., satisfy conditions (i) and
(ii), (b) of the definition of tho class K we consider the set Q of the se-

(= -]
quences (e;)er, With I'= |JI'?, defined in the lemma. For each {elq

Nl .
let 7, be a gonorator of C{) (compare (6.1), (iii)). For each e = (eedeereR?
we take an elemont

(6.11 € = (e < whe (¢] & =
) ¢ &dery ¥ o o i e=1.
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The set £, consisting of the g's defined above, is contained in D, and
has cardinal of — .D ‘We assert that for any two different clements
g, nef we have £ 5= 7 (mod m{T , pD }). This of course implies equality
(6 10). Suppose that for some &, 7 we have
e—n = yem{T, pDy}.
Then ¥ = a-+ pb with a,beD, and p"a = 0 for some integer n. Hence
for each te<I' we get

(6.12) ,_’e = ae-l- pbe.
Since 7, Ee?) there exists an infinite set of positive integers n,,
i=1,2,..., such that 7, n; # 85 for some épely, and all ¢ =1,2,.

This by (6 11) implies that for all ¢i=1,2,... wo have y; —a:,,“i
For some integer j we have n#; > n. Then for somo integer s, 0 < 8 < pM,
a;, = sy "z, T Hence by (6.12) the element 7en = Tz, is divisible
by p in the group C,m;, which is imposible.
CoROLLARY 6.13. If a group D, belongs to the class K, then
Dy =~ Dp+ Z* I, where ¥ = _5,,.
S

Indeed, the groups D, and D,+ >*I, are modules complete in their
ey

p-adic topologies. Let B be a basic submodule of the module D,. Since

Dpe K, by Theorem 6.8 B ~ B+ Y'I, with T = 2%, Obviously B+ Y1,
e «T
is isomorphic to a basic submodule of the module D,,-l—Z*I,‘,, thus Corol-

lary 6.13 follows at once from 6.7.

COROLLARY 6.14. If a group D, belongs to the class K, then for each
compact topology t in il there ewists a set A? satisfying the following conditions:

(i) 4y 48 a mawimal set of elemenis of infinite order of the group D,
which satisfy conditions (i) and (ii) of 6.3;

(11) For each set M belonging to % (compare section 1) we have
A"'n.M D

Proof. We well-order the family #;* (compare scction 1) of sub-
sets M of the group D, in a transfinite sequence (M;)s.a,, Whore w, is
the first ordinal of cardinal D For each ¢ < w, we arc going to construct
a set A, (&) ={m: A< & satlsfylng the following conditions:

(a) for each A< & we have mye M,;

(b) for each A < & the element =z, is of infinite order;
(c) for each finite subset 8 of A.(£) we have m{8} = Y m{x};

T4d
(d) the module m{T, A(£)}, where T is the maximal periodio sub-

module of D,, i¢ pure in D,
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The construction is by a transfinite induction. Let # be the ho-
momorphism

m: D, 2, pIT.

The set ;= containe an element Z, which is not divisible by p in the
module D,/1'. Suppose not, then M,z C pD, /T and hence M, Cm{T, pD,}.
But sinco u.(M,) > 0, the module D,/m{T, pD,} is finite, which contra-
dicts to Theoremn. 6.8 and 6.5. If o, is an element of M, such that the ele-
mont %, is the image of @, by the homomorphism =, then for the set
4!(1) = {»,} conditions (a)-(d) are satisfied.

Suppose now that we have already constructed the sets 4.(&) for
all £ < A with 2 < w;. Lot 5 be the homomorphism

n: D, fonte, Dy/m{Ty @y @ay .oy py ...y: & < A}

The set M,7n is not contained in pD,%. Suppose M,n C pD,n; then the
homomorphism

y: Dgn 222 Dyy/pDpy

maps the set M [37 1 into zero. Hence, since u.(M,;)> 0, the module D,%y
is finite. Let .D,,ny = p*. Then

D, =m{T,pD,, ..., &gy ..., K: & <A},

where K is 2 sot of cardinal p* of elements of Dy such that Kyy = Dpny.

Hence D,/m (T, pD,,} is either equal to p* 1 < D or is finite, which in
both cases contradicts to Theorem 6.8 and 6.6. We define A4,(1) putting

4,(2) = Uﬁr(E)u{&‘z},

where w, i8 an cloment of M, such that @,n¢p.D,7n. It is easy to check
that the set A4,(A) satisfies conditions (a)-(d). If A, is a set containing
all the sets 4,(£), & < w,, and satisfying condition (ii), then 4, satisfies
also condition (i). Indoed, for each set M;, ¢ < w,, of the family B
we have m;e M,~A, (&) and for different M, the points », are different,

morcover, oach aot of the family #; contains 5,, different sets of the
family #:*; thus

M,~A* = D,.

Now we are going to prove the second of the already mentioned
properties of tho groups belonging to the class K. We prove the follow-
ing theorem.
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THEOREM 6.15. For each group D, we have
(6.15) D, = Dy+Dj,

where D}, is a group of finile exponent and Dj, cither belongs to the class K
or it is the direct sum of finitely many groups of p-adio integers. Moreover,
for each compact topology t in D, there is an automorphism o, of Dy, such
that the groups D) and D}, are both closed in the topology to,.

Proof. Suppose that there is a decomposition of the type (6.1),
(iii) of the group D, such that Z}-’ﬁ < N). Then the group D, is the

N=0
direct sum of finitely many groups of p-adic integers and finitely many
finite p-groups. Since, moreover, by Lomma 5.7 such a group has exactly
one compact topology, namely the product topology of the topologies
of the factors in the decomposition (5.1), (iii) of D,, the thoorem is
o _ o
proved. Suppose then that 3 I'? > R,. If in addition [P > 3'F? or the

LY Nwl
condition (ii), (b) of definition of the class K is satisficd, thon the group
D, itself belongs to the class K and there is nothing to prove. Thus we
have to consider the remaining case, i.e.

= - )
4+r>x,, I'y<T, whore I'=QUI?

and fim]

(6.16) there s mo infinite sci of inlegers ny, ©1=1,2,..., such that
(@) T2, >T2 and (b) for each I? and some z, i=1,2,...,

we have I', > I,
Denote by N the set of non-ncgative intogers. For each neN let

It follows from (6.16) that the set
= (I'?: L, is finite)
1s non-void. Let I'2, be the least cardinal belonging to 4. Then (since
L,, is finite) the set N\L,, is infinite and for cach Ite N\L,, thore oxists
infinitely many sets Iy such that I'2 > T7?. Hence by an ca,sy induction
wo pick in the set N\L,, an infinite subset {n;: ¢ =1, 2,...} such that

T7. >T% and for each neN\L, wo havo I >T7 for some i — 1,2,
Let ' = ,,.\{0} Put

D, = 3 3" 04,

(6.17) "0 wrl

D= D)"Y Cint 3'I,, where & = N\(Ino{0)).

’
ne e ;: ul‘g"
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Since 4 is a finite set, D;, is a group of finite exponent. The group D3
is cither the dircct sum of finitely many groups of p-adic intcgers, when
I? is void for all ned’ and I is finite, or D} ¢ K, in the other case.

In order to complete the proof of the thcorem we show that for
each compact topology 7 in D, there exist groups Dj(r) and Dj(z), both
closed in the topology 7, such that

(6.18) D, (7) is isomorphic to D},
(6.19) Dy (7) is isomorphic to D,
(6.20) Dp = Dy(v)+Dj(7).

It is easy to sce that if ¢, = ¢}+¢?, where ¢! and ¢! are isomorphisms
of Dj(z) onto D, and Dj(z) onto Dj, rospectivoly, then the groups Dj,

and Dj arc closed in the topology zp,. To prove the existence of the
2

groups Dy (7) and Dj(r) we cgnsider the character group .D,,_, of the top-
ological group D, .. By 4.3 D, , is a torsion p-group. Let B be a basic

subgroup of it and lot
=3 S0

Ml l(ﬂn

Let further

B,=) )0 and By=) D Cpn.

ned wuldy ned” saldy,

The group B, is a direct summand of the group 'D,,’, (since it is pure and
has finite exponent). Thus get

A

(6.21) D,.=By+T.

We prove

6.22, The group U does not conlain any pure subgroup of order p"
with ned.

To see this we note first that if § is a subgroup of the group D,_,
satisfying the following conditions:

(i) By C 8;

(ii) S~AB, = 0;

(iii) S is pure in 1'),,.,;

(iv) the subgroups S and B, gencrate o pure subgroup of D,,.,;

(v) § is a maximal subgroup satisfying conditions (i)-(iv);
then

(6.23) D,,,, = B,+8.
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For, by condition (ii), all we have to prove is that D, .[8 = B;. But
this follows from the fact, that by (iii) and (iv) the subgroup gp{8, B,}/8,
isomorphic to B,, is a pure subgroup of the group D,.[/S. Thus, since
B, is of finite exponent, we get Dy ,/S = B,+M. But by (v) we neces-
garily have M = 0, which completes the proof of (6.23). The group B,
i a basic subgroup of §. Hence S does not contain any pure cyelic sub-
group of order p" with ned. In the couverse case it would contain a basic
subgroup containig a direct summand being a cyclic group of order p”
with n ¢ 8, which is not possible, since every two basic subgroups of 2 group
are isomorphic. The relations

U~ Dp..,/Ba ~8

complete the proof of 6.22.
Let

B,=Di(x) and U= Di(z).

Obviously both D} (7) and D,(z) are closed in the topology r and (6.20)
Holds. It is easy to see that by 4.6 and Lemma 5.6 (6.18) holds too. We
prove (6.19). By 4.11 the group U does not contain any pure cyclic sub-
group of order p” with neé. Both B, and U can be regarded as modules.
Let A’ and A’ be basis (compare 6.3) of basic submodules H’ and H"
of the modules U and D}, respectively. Let further 4, and 4, be basis
of By, and D}, respectively. The module D,+4-H' is a basic submodule
of the module D,+Dj; = D, and B,+H" is a Dasic submodule of the
module B,+ 0 = D,. By 6.4 there exists an isomorphism ¢ of the module
D, onto D, such that the set 4,4’ is mapped by ¢ onto 4,_.4’. Since
the orders of the elements of the sets 4, and A, are of the form p" with
ned, and neither U nor D? contains a pure cyclic subgroup of order p"
with ned, the isomorphism ¢ maps the set A, onto 4, and A’ onto A'.
Hence Dy¢ = B, and H'’p = H’. But since by 6.1 the modules U and
D; are complete in their p-adic topologies, by 6.7 the isomorphism ¢
can be extended to the isomorphism of Dj and U, which completes the
proof of (6.19) and the proof of the theorem.

THEOREM 6.24. For each group D, there exists a decomposition of
the type (b.1), (iii) such that the cardinal 2?‘? is mawimal among the cor-

responding cardinals in various decompositions of the type (6.1), (iii) of the
group D,.

Proof. It follows from Theorem 6.16 and Corollary 6.13 that

D, = D403+ YL,

P
] d"o



7. A decomposition of compact groups 27

where D;, has finite exponent and either Iy is finite and D} = 0, or

oft — ,,5 Di+ z;"'I . Clearly 270 ig the maximal cardinal among the corres-
ul"

ponding ca.rdmals in various decompositions of the type (5.1), (iii) of the
group Dp.

We conclude this section by defining another class containig
groups D,.

DEFINITION OF THE CLASS B. We say that a group D, belongs to the
class B if it i3 of the form

(6.25) Dy=Y"Cin, where IT>n

ICPZ:

TuwonrEM 6.26. If a group D, is of finite ewponent, then

—_ Z D(ﬂ)

ned

where & is finite and for each ned we have DyeB or D} is finite. Moreover,
for each compact topology t in the group D, there emists an automorphism
@. of D, such that the groups Dy, ned, are closed in the topology zo,.

Proof. Let
D, 22 CY  with 5 <N,

uf’p

Put
DY) = N*Chay  med.

ul"z

If ¢ is a compact topology of D,, then the character group ﬁp,: is of the
form D,,,, = ) D(n), where for each neé there exists an isomorphism
ned

gr: D(n) 20 DI,
By 4.2 and 4.5 wo have D, = ' D(n). Since the groups D(n) are closed

ned

in tho topology 7, the groups Dj are closed in the topology tg., where

=) ;.

ned

7. A decomposition of compact groups

In this section we prove only one lemma, which concerns groups
admitting compact topologies. It is rather doubtful whether the lemma
is of any interest Ly itself, however it is indespensable in the proof of
the Main Theorem.
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LEMMA 7.1. Let G be a group admitling compact fopologies. Then
@ = D+A+B,

where D is the maximal divisible subgroup of G and 4 < D. Moreover,
for each compaot topology v in @ there exists an automorphism o, of the
group G such that the group B is closed in the topology tep,.

Proof. If D is the trivial subgroup of @, then there is nothing to
prove. Suppose D is non-trivial. Then, by (5.1), (ii), 1. we have D > 2%,
Now we choose the decomposition (5.1) of the group & in the way that

each of the cardinals 2" 0 , p =2,38,0,..., 18 maximal among the corres-
ponding cardinals in various decompositions of the group @. (The possib-
ility of the choice follows from Theorem 6.24.) By (6.17) for cach prime
p the groups D, and Dj in the decomposition (6.16) can be chosen in
such a way that the given decomposition of the type (5.1), (iii) of the group
D, is & refinement of the decomposition (6.15) of the group D,. If we
choose the decompositions (5.1) and (6.15) in the way dosoribed above,
then for each prime p and a finite set J of integers we have

(7.2) D, =D "0,

ned ad":'

and
= =D
D} =2,

where Iy, n=0,1,2,..., are the corrcsponding sets in tho chosen
decomposition of the type (5.1), (iii) of D,.
Put ‘

A=3"D,, B=3'Dj,
D

P
where for each prime p the groups D, and D, are defined as follows:

0
D, = 2 2" Cint 2* I,
=] “sg “SZ'J

where 8% = I7 if 2'2 < D, S2CI? end 250 = B if

(7.3) 20> D, n=0,1,2,..;
.D” =2# Z.G;’ﬁ-}- Z*I;”
el epP yew?

where Y7 = I7\8:, » =0,1,2, ...
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It follows immediately from (7.2) and (7.3) that

(7.4) if D} <D, then D% C D,
It is plain that

(7.5) D+A+B =@ and A4<D.

In order to prove the second part of the lemma we show that for
each compact topology v in the group G there exists a decomposition

(7.6) G =X+Y

of the group @ such that Y is closed in the topology v, X is isofnorphic
with D+ A and Y is isomorphic to B. Hence the antomorphism ¢, is
obtained by putting ¢, = ¢} ¢, where ¢!, ¢> are isomorphisms of X
onto D+A and of Y onto B, respectively.

Oonsider the character group @, of the topological group G,. Let T
be its maximal periodic subgroup and K a subgroup of @, such that

(7.7) E=§/T ad gp{T,E}=4,.
A~
By (5.7) and 4.4 (G,/T) ~ D; hence by 4.12 we have

(7.8) 9k = D.

Obviously @,/K is a periodic group. Let T, be the p-component of the
group 7. We have
(1.9) T, =TH+T},
where T, has finite ezponent, Tp contains a basic subgroup Bj
such that Ti/B: = Tp.

For the proof of the existence of the decomposition (7.9) see [2],
p. 106. Let

(7.10) Ty =)' > Ca

We put B, = T +B}. The group B, is a basic subgroup of the group
T,. We have

- D D
(7111) B,=Y 3 C.. ond (by Lemma 56) 2% =2".

A=l uﬂ”:

We define a group B, being a direet summand of the group B, in
the following way:
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U 2"5; £ 5, then we put

had =D
(1.12) B, = 2 Z Ciny  Where MP = QF, for 2°» < D, MZC QP

=1 uMﬁ

and 27 — B for 2% > D.

1t 27 > D, then, since D >c, we have 7% > N,. Hence by (7.9)
the group T /B,, T;/Bj is the direct sum of T” 8. Lot m be a car-
dinal such that 2™ =D (compare 4.12). By Lemma 3.1 for each set
0% of (7.11) there exists a subset N7, of it such that N? < m and for each
get MP between N2 and Q% for the group

Con

Ms

(7.13) B, =

p-

= M

the group T,,/B contains a gubgroup H, being the direct sum of m O,

We use (7.13) for the definition of the group Bj in the case 275 > 5
selecting the sets M5 in such a manner that

(114)  ME=QP, it of<Dh,
MPCQ, NCMP and 2A=D, i 2fs D,

Let Hy, be a subgroup of T, such that H, = H, and gp{H,, B,}/B, = H,.
For each prime p we define a group U, putting

ep{T%, By}, if 2%» <D

(7.15) U, = pr ol .
gp{H,, By}, it of»> D,

Let U, be a pure subgroup of T, such that U,C U, and U, = T,.
Clearly
(7.16) 90 < B,

Let X' = gp(K, %‘ U,}. We define X" to be a pure subgroup of

@, containing X' and such that X' = X’ guch a subgroup exists, since
X’ is infinite. By (7.8) and (7.16) we have

(7.17) o® < D.
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Let ¥'=@,/X". Since X" is pure in G, by 4.8 we have G,= X4 ¥,
and ¥' is closed in @,. We put X = X' and ¥ = ¥’. We are going to
prove

(7.18) X~A+D and Y~B.

Since K C X", the group @,/X" is periodio. Hence, by 4.3, ¥ is redu-
ced and thus DC X. Let X = D+ M. M is a reduced group admitting
compact topologies, for, if n: @ °™ @G/Y = X and n: X % X/D = M,
then the topology 7= is a compact topology in M. Hence by (6.1), (n)
and (6.1), (iii) wo got

(7.19) M = Z (2'2 Opnt Z L),

Rl uP uP

where for each prime p and non-negative integer n the set P2 corresponds

to the set I'2 in (5.1), (iii) and the set P} is such that 270 is the maximal
cardinal among the corresponding cardinals in various decomposi-
tions of the type (6.1) of the group M. We prove that M =~ 4. We show
that for each prime » and non-negative integer » we have

(7.20) ofn — 9%,

Thig will give us the first of the isomorphisms (7.18).
For ocach prime p let

By =) )cC
n=l ux?,';

be a basic subgroup of the p-component R, of the maximal periedic
subgroup of X*'. Since X'’ is pure in @,, R, is pure in T, and hence the
group B, can be extended to a basic subgroup Bj of T,. We have

5&
N
R

where *QF = QF, and thus
By Lomma 5.6 we have

of2 — oFa,

_ ,, _
In order to prove the equality 2’:2 — 9% we consider first the case
n>1. If, moreover, 2°n < D, then by (7.3) and (7.11)
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Using (7.12) and (7.13) we see that the incquality o < B lmphes
QP — MP. Since B, C X" and B, is pure in G, (and hence in X"), B,
can be extended to a basic Bubgroup of R,, Thus M2 < fz, which toge-
ther with the previous inequalities gives 2 = M? < B? < 0% and com-

pletes the proof of (7.20) for » > 1 and 2§ <D. 1 9% — D, then by
(7.3) 9™ > D. Hence, by (7.11), 2% > D. By (7.12), (7.13) and (7.14)
we get 99 — B, Thus, since B, can be extended to a basic subgroup
of X", we have 2% > D, which by (7.17) implies 2% — D. We have
then 21_5’* =D —23"

For the case n = 0 we note first that by (7.4) we have either .Df, C D,
then by (7.3) 8% = I'? and the group D, has finite exponent, or D} > D.
In the first case the group D, cannot contmn a torsion-free diroct summa.nd

of cardinal greater than D. Thus, by 4.8, 4.5, 4.9, and Lemmsa 5.6 the
group 7', has no pure subgroup F that the factor group T,/E is the dlrect

sum of n O,.'s with 2" > D. Hence by (7.9) 9% < B and by (1.15)
T3CU,. By 4.5 and (7.0) we get D, ~ T, = U,+8, where § has finité

exponent. But hence the maximal value for 270 in the decomposition
(6.1), (iii) of D, is the same as the maximal value for the corresponding
cardinal in the decomposition (5.1), (iii) of U,. Since U, is a pure sub-

group in 7,, by 4.8, we get U, C X"’~D,. Hence the oquality ofd = of o
is an immediate consequence of the choice of the decomposition (7.19).
In the other case, i.e. when l) > D, by (7.3) we have 2% — B. But

X < D. Then the only thing which is left to show in this case is, that X
contains a direct summand being the complete direct sum of m I,'s with

o™ — D. It follows from (7.9), 4.6 and Lemma 5.6 that 25‘ > > D. Hence
by (7.13) and (7.15) U, contains the pure subgroup B, such that U,/B,
contains a direct summand, which is the direct sum of m C '8, This
by 4.8, 4.5, 4.9 gives the result.

Now we are going to prove the second of the isomorphisms (7.18).
Since ¥ is reduced and admits compact topologies, then by (5.1), (ii)
and (5.1), (iii) it is of the form

(7.21) Y = 2 [2 Z o+ 2 19].

ne=1 u@

We suppose that the decomposition (7.21) is chosen in such a way that

=p
the cardinals 2%, p = 2,3,5,..., are maximal among the correspond-
ing cardinals in various decompositions of the type (6.1) of the group Y.



8. Groups in which all compact topologies are isomorphic a3

As above we prove the second of the isomorphisms (7.18) showing that
for each prime p and non-negative integer » we have

(71.22) 97 — o¥a,
We consider the case n >1 and n = 0 separately.

Let n > 1. If o™ < < D, then by (7.3) ¥} is empty and S = I?.

=p RD

Hence, by Lemma 5.6, 2“» = 2™ < D, which by (7.12) and (7.14) gives
ME = Q7. Thus by (7.11), (7.12) and (7 13) thore is no pure cyclic sub-
group of order p" belonging to @, and disjoint with B,. Hence, since
X" is pure, G,/X"" = Y’ does not contain any pure cychc subgroup of

order p". This by 4.11 implies that also ¥’ = ¥ does not contain any
pure cyclic subgroup of order p™. Thus & is empty. On the other hand,

if oT» > D, then by (7.3) !P“ = 1‘” and since X < D, the equality 2% —

— 2% follows immediately from Lemma 5.4.
Oonsider the case n = 0. If D; < D, then by (7.4) D?C D, and

Y? is empty. We have then om0 <D. But 2" 0 is maximal. Thus 2?12’ < D.
For, by (7.9), 4.6, 4.7, 4.9, the converso inequality would imply that
T, contains a direct summand being the complete direct sum of 2;'12’ groups
I,, which is imposiblo since, by Lemma 5.6, 1/, ~ D, and 2% i5 maximal,
Thus by (7.16) T;C U, C X''. Hence, since X" is pure in @,, the homo-
morphism @, = @./X"’ maps the group T, into a group of finite exponent
and therefore the p-component of the group ¥' ~ @./X" has finite expo-
nent, which implics that, since ¥ ~ ¥', &7 = @. In the case D} > D
by (1.3) we get 270 > D and hence I? — PP. Since X < D, the equali-
ties

270 = oFo — 0%
are immediate consequences of the uniqueness of the maximal cardi-
l“’
nal 2%0,

8. Groups in which all compact topologies are isomorphic

In this section wo shall investigate the class N of the groups admit-
ting compact topologies and such that cvery two compact topologies in
a group of this class are isomorphic. Our special interest in this class
is caused by tho fact that this is the class of groups for which the Main
Theorom becomes trivial. We show that the class N is rather narrow sub-
class of the class of the groups admitting compact topologics. We present
@ full description of the groups of the class N by means of the cardinals
4,4,, 1", p =2,3,6,..., n =10,1,2,..., of the decomposition (5.1).

Rozprawy Matematyczne XXXVIII 3
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The results of this section might have some interest from the purely
algebraic point of view. By Pontrjagin’s duality theory, any compact group
@ is the character group of a (discrete) group H. Moreover, the topology
in @ is defined up to an isomorphism by the group H and wvice versa the
group H is uniquely defined by the algebraic structure of G and its topo-
logy, for @ ~ H. Thus the problem of characterizing the groups whose
compact topologies are isomorphic is the same as that of finding all the
groups @ such that for each of them there is precisely one group H with

(8.1) G ~ Hom(H, K),
where K is the group of rotations of the circle, i.0. the group Z*Oﬂm. In
D

general, the isomorphism (8.1) is not defined uniquely by the group @
and H. This means that the group & can “act” on the group H as Hom(H,
K) differently. The groups @ for which not only the group H but also
the isomorphism (8.1) is defined uniquely by the algebraic structure
of @ are the groups which admit precisely one compact topology, namely
the one which i8 carried into ¢ by the isomorphism (8.1).

Using the generalized continuum hypothesis (5) we prove the following

THEOREM 8.2. Let @ be a group admitting compact topologies. Then
all the compact lopologies in G are isomorphic if and only if G has a decom-
position of the type (6.1) such that

(i) 4, = @ for all primes p
and either

(ii) 4 = O and, for each prime p, I's = @ for all but a finite number

of non-negative integers m,
or
(i) 4 >c¢ and I'h = O for all but a finite number of primes p and
positive integers m.

Proof, We prove first the sufficiency of either of the pairs of con-
ditions (i)-(ii) and (i)-(ii)’. We show that if (i)- (ii) or (i)- (ii)’ are satisfied,
then the character group &, where 7 is an arbitrary compact topology
in @, is defined uniquely by the algebraic structure of G. We consider
conditions (i)-(ii) a.nd (i) (ii)" separately.

Conditions (i)-(ii). In this case the group @ is reduced and hence
by 4.3 the character group @, is periodic. Let
(8.3) 4, = 2@,

(°) It is rather doubtful whether the theorem can be proved without the
generalized continuum hypothesis. Tor, it can be deduced from it that for every
two cardinals m and n the equality 2™ — 2" implies m =n. It is not known
whether this is weaker than the generalized contimuum Lypothesis.
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be the decomposition of @, into its p-components. For each prime p lot
B, denote the basic subgroup of @,. By condition (ii), for each prime p
there exists an integer m such that @ contains no pure cyclic subgroup of
order p" with n > m. Honce by 4.11 the same is true for @,, which means
that the group B, has finite exponent. Thus, since B, is pure in G,,

(8.4) G, = B,+H,
where H is a divisible p-group. Let

(8.5) =S Jo, E- Yoo

n=l qu T ¢

Hence by (8.3), (8.4), 4.6 and 4.9 we get

o= S5 3o )

» Bl n.l'p ] 0

But by Lemmas 5.4 and 5.5 we have T2 = I'? for all n =0,1,2,... and
p=2,3,5,... Thus by (8.5), (8.4) and (8.3) we have expressed the
structure OIG in terms of the cardinals I'?,n = 0,1,2,...,p = 2, 3, 5,
which in this case are uniquely defined by the group G (compa.re Lemmas
5.4 and 5.5).

Conditions (i)-(ii)’. It follows immediately from condition (ii)’
that the maximal periodic subgroup T of the group @ is finite and hence
closed in the topology r. We note that there exists a direct summand S of
the group G complementary to T and also closed in z. For, since T is
pure in G, the annihilator N of T in the character group G, is by 4.7 a pure
subgroup of @, and @,/N ~ T ~T. Hence, since T is the direct sum
of cyclic groups, N is a direct summand of G@,. Thus @, = T+XN. Hence,
by 4.5, G = T+S. where 8§ = N, and & is closed in 7. Since § is torsion-
free, the group 8. =~ N, ' = rAf, is divisible. Thus

P
¥=DE0+D 3 0oL,
14Ty ? “Tp

Sinco 7' ~ T, it sufficics to prove that the cardinals T, and T,, p =
2,3,5,..., are uniquely defined by the group ¢. By 4.5 we have

G =T+8 =T+ 3RO+ D" D"IP.

1Ty P 1sTp
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Since T is finite, the conditions of Lemma 5.5 are satisfied and the equal-
ities T” P, p=2,3,5,..., follow at once. By 4.4 the group D

= ) R"’ is the maximal divisible subgroup of G. Hence D = 2 R®
1eTy ud

and, by (5.1), (i) 4R, = ER(‘) = 2", where, by 4.12, n = Sk = o Ry

1eT
Hence, since 4>c¢, we ha.ve n>n, ond 7,8, = T,. Thus Z 280
= 2%o and, since the generalized continuum hypothesis is assumed, T
is uniquely defined by 4 and hence by @, as required.

Necessity. In order to prove the necessity of cither of the pair
of conditions (i)-(ii) and (i)-(ii)’ we show that if a group G docs not
satisfy (i) or both (ii) and (ii)’, then it admits at least two compact
topologies which are not isomorphie.

Condition (i). Suppose that @ has a decomposition of the type
(8.1) such that 4p # O for some prime p. Then, by (6.1), (i), the maxi.
mal divisible subgroup D of @ can be decomposed as follows:

D= Y HO4 )" 3T R,

where ‘%o P Up
HY — 2’ R®, FO = Z R“’+C},'3..
with i3, €7,

§, =W =c, 20r=1, 2f=1.

Every group H" has a compact topology 7, such that HY ~ R. Every
group FY has a compact topology 7, such that Ff),, is of rank 1 (see [6])
and a.lso a compact topology 7, such that F(" .18 an indecomposable group

of rank 2 (see [6], example). Let 7’ be a compa.ct topology in the reduced
part of @ We put

7y =1X%7, Where A= TonUU,,, T,=TX PT,XP P 3,
1ed 1«ly p 1eUp

Then by 4.5 the group &, , 18 the direct sum of groups of rank 1 and a perio-
die group. The group G is the direct sum of groups of rank 1, a perio-
dic group and 1ndecomposable groups of rank 2. The groups @ and G,
are not isomorphie, since by [9] each direct summand of tho group G, /P
where P is the maximal periodic subgroup of Gm is the direct sum of
groups of rank 1. Thus 7, and v, are not isomorphie.

- Conditions (i)-(ii). Suppose now that the group G satisfies con-
dition (i) and condition (ii) does not hold. Then either

(@) jor each prime p there exists an increasing sequence of integers
ngy ¢ =1,2,..., such that I'y, + @,
or

(b) 4 + Q.
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We consider first case (a). Let

H = 2 ™)

i=1

where for each ¢ the group C,,, is equal to Cl), for some ceI,. Let
A be a direct summand of the reduced part of G complementary to H.
Let D be the maximal divisible subgroup of @ The group 4 is the com-
plete direct sum of finite cyclic groups and groups of p-adic integers
(might be with various p). We define a topology z, in G putting

Tl — T'x T” x _rfll,

where 7’ i8 an arbitrary compact topology in D, "’ the compact topology
in A being the product topology of discrete topologies in the finite cyclic
direct summands and p-adic topologies in the groups of p-adic integers
in the decomposition of 4 into the complete direct sum, z’*’ is the prod-

uct topology ? 1,y where 7;” is the discrete topology in the group O g
-]

i=1,2,... By 4.6 and 4.9 the maximal periodic subgroup of the group

@, is the dlrect sumn of finite eyclic groups and 0,'8. We are going to

construct a topology r'¥ in the gronp H such that H ,1v is reduced and

contains elements of infinite height. Then the topology
Ta=1Xt'xXt"

is not isomorphic to t,; for, 0 is not isomorphic to G, , since the redu-
ced part of the maximal penodm subgroup of the group G containg
elements of infinite height, which is not true as far as the manmal perio-
dic subgroup of the group G is concerned. In order to construct the
topology tI¥ we define a reduced group F with elements of infinite height
such that F ~ H. Then we put 7!V to be the topology transfered into H
from JF by the isomorphism # ~ H. Let F be the group generated by the
symbols
b,ay, a,,...
and the relations

(8.6) pb=0, b=p"a=..=p"y=..

It follows immediately from (8.6) that the element b has infinite height
in ¥ and that I is reduced. We prove that I ~ H. We show first that
the set

{000, = p™H1~ Mgy, —a, i =1,2,...}

generates a pure subgroup I” in F and that

F' —ZEP{%}—ZCW

{em]
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To do this we note first that

(8.7) pMe; =0, 1=1,2,...

It follows from (8.6) that

(8.8) i riat...+ra = {Opa, acF, then p™|r; or p|r;, respectively,
i=1,2,...,k

We have
k
(8.9) myeit...+Fmpcy = Z (mp™+ 1My, — ay)
{ml
k—1
= M, a,+ 2 (myp™H+1 M —my ) Gy + My p™et1 ™k By
{ml
Suppose that for some integers m,, ..., m; we have

Myt ... +mycp = 0.

Then by (8.8) and (8.9) we get p"i|m;, which by (8.7) gives m;c; =0,
i=1,2,..., k. Similarly we prove that F'is pure in F: if p divides m,¢,+
+...4 myey in F, then by (8.9) and (8.8) p|m;, ¢ = 1,2, ..., k. It follows
immediately from (8.6) and the definition of the ct’s that F[F'=~0,

Since F” is pure in F, by 4.8, we get =1 +(17'/11 ). Hence by 4.6 and
4.9 we obtain

o0
F ZO,,n¢+I,,.
{e=l
It is plain that the group H belongs to the class K (compare section G).
Then, by Oorollary 6.13, H+I, ~H and thus F ~ H.

(b) Suppose 4 # . Then, by (8.1), (i), we have J >¢. We consi-
der first the case J = ¢. Let § be the reduced part of the group & and
let " be a compact topology in it. The maximal divisible subgroup .D of
@ can be decomposed into the direct sum D = D'+D? such that D!
= D*=c If ", 7" are compact topologies in D! and D? respectively,
such that DL ~ D..~R, and 7' is a compact topology in D such
that D ry ~ R, then the topologies

=tXT'X?”’ and T,=tvXt'XT"

are not isomorphic since by 4.5, 4.3 &, /N, ~R+R and G, /N,~R,
where N, ~ S,,As, N,=8.,,s are the ma.x.lma.l poriodic subgroups of
@., and G, , Tespectively.

In the case J > ¢ the group G either satisfies condition (ii)’ and
then all the compact topologies in G are isomorphic, or it docs not
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satisfy (ii)’. Thus the only thing which is left to show for the proof of
the theorem is the necessity of

Oonditions (i)-(ii). Let then 4, = @, 4 > ¢ and there exists an

infinite set of primes p,, p,,... such that I’,’;’; # @ for some suitably
chosen positive integers #;. We start with two groups

o0
H= ;{“‘o,,gi and M= DR with 4=2
= ied
We rearrange the direct summands in the decomposition (5.1) of the
group G in such a manner that

G =S8+K+M+H,

where 8 = Y RY, T' =7 and K is the complete direct sum of finite
el

cyclic groups and groups of p-adic integers. If 7, = ' X 7"’ X """ X 7,
where t',t",7'"’, 7" are arbitrary compact topologies in the groups
8, K, M,H, respectively, then by 4.5, 4.3, 4.4 the maximal periodie
subgroup R‘ +H,.v of the group @ is a direct summand of it. We put
1, = 7' X 1" X 7, where 7 is the compa,ct topology transferred into M +H
by the 1somorphlsm 7~ M+H and T is a discrete group isomorphic

with (Zopw. To see that in fact ¥ is isomorphic with M-+H we note
-1
that the direct product ) Cpyn = F’ is a pure subgroup of F and that
7=
P[F" is a divisible torsion-free group of cardinal ¢. Hence by 4.8 we have

N S
F=F+4(P|F) and, by 4.4 and 4.9, (F/F')~ M and #" ~H. The
topology T, is not isomorphic with the topelogy r,, since the maximal
periodic subgroup F’'+K,. is not a direct summand of the group 0,2.

THEOREM 8.10. A group G admits emaclly one compact topology if
and only if it is of the form
G = Z*-Dm
P

where for cach prime p the group D, is the direct sum of finiiely many cyclic
p-groups and groups of p-adio inlegers.

Proof. The sufficiency of tho conditions of the theorem was proved
in Lemma 5.10. In order to prove the necessity we consider the set of
automorphisms of the group @ We show that if G contains a non-trivial
divisible subgroup, or for some p the group D, is the complete direct sum
of infinitely many cyclic p-groups and groups of p-adic integers, then for
each compact topology t in the group @ there exists an automorphism
¢ of the gronp, which is not continuous in the topology . Thus we get
two different topologies v and tg of the group G. Since the maximal divis-
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ible subgroup D of & is a direct summand of it, then every automorphism,
which is not continuous in TA D defines an automorphism of &, which is
not continuous in 7. Similar reasoning leads us to the conclusion that
if @ = }*D,, then overy automorphism of the group D, (for some prime

) Whiclr is not continuous in the topology z A D, defines an automorphism
of the group G which is not continuous in 7. Thus the theorem follows
from the following simple two lemmas.
LEmMA 8.11. If D i a divisible group and t a compact topology in
it, then there exists an automorphism of D, which is not continuous in <.
Proof. By 4.10 the group of the automorphisms of D which are
continuous in 7 is isomorphic with the group of the automorphisms of

D,. Hence it hag cardinal not greater than 23' = D. But, since D is
divisible, and .D > ,, the group of the automorphisms of D has cardinal
2P > B.

LEMuA 8.12. If a group D, is the complcte direct sum of infinitely

many finite p-groups and groups of p-adic integers, then for each compact
topology T in D, there exists an automorphism which is not continuous in <.

Proof. Similarly as in the proof of Lomma 8.11 we show that the
group of the automorphisms of D, which are continuous in 7 has cardi-
nal < D,. To see that the group of all the automorphisms of D, has

cardinal 2°° we note that by Theorems 6.15 and 6.26
D, = D,(1)+...+ Dy(k)+Dj,

where either for some 4, i =1, ..., k, DL(¢)eB and D} (i) = D,, or DicK
and B = D,. It is easy to venfy tha.t in the first case the group Dj(i) =

=.§ COs A = D)(4), has 2550 — 95, automorphisms. In the second

case by Corollary 6.14 the group D contains a sct 4 such that 4 = D?
and each permutation of A defines an automorphism of a basic submo-
dule of Dj. Hence by 6.7 it defines an automorphism of Dj. Thus the

group of the automorphisms of D, has again cardinal 25:’ = 2P,

9. The class M

DEFINITION OF THE CLASS M. We say that a group @ belongs to the class
M if for each compact topology T in G there exists a sct A, containcd in G
such that

(i) of M is a Borel subset of positive Haar measure of the topologfcal
group @,, then Mr\A = G

(ii) for any compact topology T in the group G there ewists a group A,
containing A, such that ¢ = A,4-8, and such that if 7', '’ are any lwo com-
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pact topologies in G and @, a one-to-one mapping of A, onto A, then
@.o has the unique extension to an isomorphism of the groups A, and 4.
and, moreover, Sy == 8,..

The class M, though defined somewhat artificially, is the class of
groups for which we prove the Main Theorem at first. This will enable us
to deduce it in the general case. The class M is large enough to contain
all the divisible groups admitting compact topologies as well as the groups
of the class I and B.

LumMA 9.1, Any divisible group admiiling compact topology belongs
to the class M.

Proof. Let ¢ be a divisible group and v a compact topology in it.
We well-order the class #Z;* (compare section 1) of subsets of @ in the
sequence {(M;>; ., Where w, is the first ordinal of cardinal G By Lemma
1.4 we have M; = @ for each ¢ < w,. For each & < w, we pick an ele-
ment 2, belonging to M, and linearly independent from the set {z,: 7 << £}.
If A, is a maximal set of linearly independent elemonts of @, containing
the set {z;: & < w,}, A, satisfies all the requirements for the set
A, in the definition of the class M. (In (ii) the group A4, is the least divis-
ible subgroup containing A, and 8§, is the maximal periodic subgroup
of @,.)

LEMMA 9.2. The class K ts contained in the class M.

Proof. Let G eI and let 7 be a compact topology in G. Let A, be the
get the existence of which is asserted by Corollary 6.14. Plainly, 4, satis-
sfies (i). The module

B(r) = m{4}+T(x),

where T'(r) is a suitable periodic submodule of a basic submodule of G..
If m denotes the completion in the p-adic topology in the module m,
then by 6.6 we have

@, = B(t) = m{4,}+T(7).

If v’ and 7'’ are two compact topologics of the group @, then every one-
to-one mapping of A, onto A,. defines uniquely an isomorphism of
m{A,} onto m{4,}. By 6.7 this isomorphism has the unique extension
to the isomorphism of the modules m{4,} = 4, and m{d.} = 4.
Since by 6.4 tho modules B(z’) and B(v'’) are isomorphic and T(z’),
T(x”) are the maximal poriodic submodules of B(_z') and B(z'’) respec-
tively, we have T(t') ~ T(r") and putting 8, = T'(7'), 8 = T(z") we
get S, ~ 8,-, which completes the proof of Lemma 9.2.

LEMMA 9.3. The class B is contained in the class K.
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Proof. Let G = ) O,,¢B, and lot 7 be a compact topology in @. As

sed
in Lemma 9.1, we well-order the class #;* of subsets of G in the sequence

(M ¢Yecwy Where w, is the first ordinal of the cardinal @. In cach set M,,
¢ < w,, we pick an element &, such that the sequence (@, ., consists
of elements independent over the ring Cp» and such that the group gp{v,:
7 < £} is pure in G. The existence of this selection we prove as follows.
Suppose that for some &, { < w,, there is no element #, in M, such that
the set {z,: 7 < &} satisfies the above conditions. Then M, C gp|{,:
7 < £}, pG) = N. Hence, since M, has positive Haar measure, the group
G,/N = 8 is finite and G,[p@, = gp{z,: 7 < £}+8. But henco @ [pG,
=Ep+8 < (7, which is impossible, since Ge«B. A maximal set A4, of ele-
ments independent over the ring C , generating a pure subgroup of @,
and containing the set {m: & < w,} satisfies the requirements for the
set A, of the definition of the class M. Condition (ii) is satisfied automa-
tically, since gp{4,} = &,.

We conclude this section with the following

LEMMA 9.4. If a group G belongs to the class M and if © is a compact
topology in @, then the sct A, can be decomposed into G disjoint sets A3,
Aed, each of full outer Haar measure and of cardinal G.

Proof. We well-order the familly #;* in the sequence (M),

where w, is the first ordinal of cardinal @. Since for each &, & < w,,

M4, = G'__I, we select by an easy transfinite induction a sequence
¢x{";<; in such a manner that the elements 2}, B < n < ¢, are different
and belong to A,. Since every set M eZ! contains G different sets of
the family #:*, the sets

= E<w), A< g,

are disjoint, of full outer Haar measure and of cardinal @. We put

Al =CUANU 0} and A2 =0C' for 1< i< w,.

A<wg

10. Proof of the Main Theorem (groups of the class M)

Now we are in a position to prove the Main Theorem for the groups
of the class M. We prove it in a slightly stronger form.

TEEOREM 10.1. Let G be a group belonging to the class M and lct (TQ)
be a system of compact topologies of G (compare section 1) such that @ = 2",

where m = @. Then there exists a regular system (S9) isomorphic to the
system (T0Q).
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Proof. Let Ge M, @ = m and (FQ) be a system of compact topolo-
gies of @ such that @ = 2" For each (e we put 7, = ¢ (T2) and by 4,
we denote the subset A, of G, the existence of which is postulated in
definition of the class M. Let further 2, be the family of the Baire sets

of the group G, , v, its Haar measure and &% the family of the Baire sets
of positive Haar measure.

Consider the group

D6, =H.

e

For each set B C Q we denote by &y, vg, FE the class of Bairo sets,
the Haar measure, and the class of the Bairo sets of positive Haar measure
of the subgroup Hyp = ™G, , respectively.

'y

We shall use the following simple fact:
10.2. If M belongs to Bg (or to Bp), then it is of the form

where B =R, and MgeBy, (or Mgy respectively).
To see this we note first that the sets of the form (10.2) form a o-field

of subsets. Thus it sufficies to prove 10.2 for every compact set C which
is the intersection of countably many open sets. Let then

(10.3) ¢ =NUYY, where V=7V, +Hugz,

’i=l q
E; is @ finite set and V,, an open set in the group Hpg,. Since ¢ is compact,
by (10.3),
0 n§
0=NUr.
im141

Hence, putting I/ = UE,,. we obtain (10.2).

Since & = 2™, the set Q2 can bo regarded as the product space with
the Tychonoff topology of m two-points discrete spaces. Let W be a base
of cardinal m of open sets in 2 and let LW, be the least o-field containing
Q. Plainly W, = m¥ = m, since, by 4.12, m = G = 2%,

Lot P boe the family of all countable sequences
(10.4) b= (W, Wy, ..}
of mutually disjoint sets Wy, ¢ =1, 2,..., belonging to W, and covering
togethor tho sct 2. We have P = m® = m. It is easy to see that for
each countable sct F = {1, ts, ...}, EC 2, there exists a sequence of

the form (10.4) such that ;e W, foreach? =1,2,... For each p we select
a fixed set

E, = {u,(p), ta(P)y ---}
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of elements of £, such that ¢(pye W; for each i =1,2,... For each
set ME e.@E we denote by M, the pair (ME y D) a,nd by .?e?‘ the set

{M, ME eﬂg} We have 9?" =m and hence, if

= %y,
pe
then also-
(10.5) " =m.

For each M,c%" and every ¢cQ2 we select a set 4,(M;) contained
in A, such that

(10.6) A,(Mp) =m,
(10.7) p LA, (M) =1,

(10.8) bj.;:l.(M,) = A, and M, # M, implies A,(My)~A (M) =@
»

The existence of such selection follows immediately from (10.5)
and Lemma 9.4. It follows from (10.7) and Fubini theorem that for each
set F contained in 2 we have

(10.9) VB[ 2A,(M)] = 1.

Equalities (10.6) and (10.8) imply that for every pair ', ¢’ of elements
of £ we can find a one-to-one mapping s(¢', ¢'') of 4, onto A,, such that
for each M,<%"

A, (M)8(y ") = Ap(My)
and for every three elements ', ¢, ¢’ of the set 2 we have
(¢, ") (e, ") = 8(', ).
For each M, we define an element
2(My) = (@ (Mp)dia = @DicaeH

as follows:

For ¢ = 4(p), ¢ = 1,2, ..., we choose a, from A,(M,) in such a way
that <@, (P)>icya,. €M x, with M, = (M ) p). (The possibility of the
choice follows from (10.9) and the fact that M E”esﬁ’;,p.)

For the rest of the ¢'s, te2, we put

(10.10) o, = o, (p)s(u(D), ¢,
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where (p) i8 chosen in the way, that « and ¢ (p) belong to the same set
W‘ OI p = {Wll Wz, .--}. Let

A = {2(M,): M,e%*}.
We are going to prove that the set A has the following properties: -

(i) va(4) =1;
(10.11) (ii) for each t, ¢eR, the projection =,: H - @, i3 a one-to-one
mapping of A into A,;
(iii) ANAxw, = m.

To prove (10.11), (i) we show that for each M «&; the sets 4 and
M have non-void intersection. By (10.2) there exists a countable set
E = {4, ts, ...} contained in 2 and a set My belonging to BE such that
M is of the form (10.2). Let p = {W,, W,,...} be an element of P such
that for cach ¢ =1,2,... we havo e W;. If s is the mapping of Hg
onto H E, defined by the equality

B, )im1...9 = <$c43(‘i1 ‘i(p))>i—1,:,...

with @, ¢Gy,;, then Mps e.@E Let Mgs = ME We verify that 1f M, =
= (Mg, p), then <@).,n = w(M,)eM Indeed, we have <@, ()i, eMx,
and hence

(@, (D)8 (6:(P)) 4)D1mrs,... = @ (P)Dici,. 87 e Mg

But since for each ¢ = 1,2, ... the clements ¢(p) and ¢ beldng to the
same set W, by (10.10) we have ., (p)s(q(p), o =z, foralli=1,2,
and thus <(@,)(.1,,. ¢ Mg, Which by (10.2) gives (z, ),.,,elll’aA

In order to vemfy (10.11), (ii) we note that for each z(M,) =

= (@, (M,)),m the element z,(M) belongs to A (M), 1eR, and the set

A,(M,) is disjoint with all the sets A,(M,) for M, different from M,.

For the proof of (10.10), (iii) we note simply tha,t. for each A le.Q
and M,e%* the element @(M;)=, is the only one among the elements
o(M, )n,,M ¢ #*, which belong to tho sob A(M) Thus (10.11), (m),

follows immediately from tho oqua,hty 4,(M,) (M, ) =m = R,.
For cvery two clements o, of 2 let ¢, » be the mapping

Qe ot ©(Mp)me > a( M) > o (M) 7,0

By (10.11), (iii) the mapping ¢, is well-defined and one-to-one.
For every three elements ¢, ', of 2 we have

(10-1.2) Q:o.,m = ?:"‘u Q:rq"m «
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By (10.11), (iii) the function tp,. .. can be extended to a one-to-one map-
ping of A, onto 4, such that condition (10.12) is patisfied for the extended
mappings. By condition (ii) of the definition of the class M this mapping
ca.n be extended uniquely to an isomorphism ¢, . of the groups A, and

. Since the extension is umque, condltlon (10.11) is still satisfied
for every three isomorphisms @, e, @e ey @y 0. By condition (ii) of the
definition of the class M for each L te.Q we have

G, = 4,48,

and for every two indices ¢, of the set 2 we have §,, =8, ... Thus
the isomorphism ¢, ,. can be extended again to an isomorphism of the
groups @, and G, in such a manner that condition (10.12) is satisfied
for every three isomorphisms @, .., @us ey Puen.

Consider the subgroup @ of the group H defined as follows:

G' = {(w.>..n= mc"Pl’,a" = wc"’ ma GG,., ‘) "! "HE'Q}‘

The group G’ has the following properties:

1. For every t, te2, the projection x, of G' onto G, is an isomorphism.

2. AC@ and hence v3(G') =1.

Let 4 be the o-field of subsets M’ of the group @ of the form
M’ =@~ M, where M e%4,. Let u' be the measure on the o-field 4 induced
by the measure v, and defined by the equality

W (M) = v (MAG) = vo(H).

For each (<2 we denote by #, the isomorphism of @; onto G’ such that
7,7, 18 the identity map of G, . We prove that the measure 4’ is common
extension of the measures y,7,, tef2. Let M <%,. Then

= M= 'nG'eZ.
Hence
p(Mn) = p' (Ma7 nG') = vo(Ma?) = p,(M) = p,n(MUn,).

From the last statement Theorem 10.1 follows at once. For, let 12 be an
isomorphism mapping G' onto @. Then the measure u'A = y is 2 common
extension of the measures g, 7,1, tef2. Obviously 5,4 = {, is an automor-
phism of @. Thus the system (S2) defined by the equality

t(8Q2) = (T, 102,

is semi-regular and, clearly, it is isomorphic to the system (7'2). To see
that (89) is regular we notice that by 3.2 and elementary properties of
induced measure, the measures gu,7,, 1¢2, are all different and indepen-
dent in their common extension u’. Hence the measures u,f, = u,1.1,
tef2, are independent in their common extension u = u’A.
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11. Proof of the Main Theorem (reduced groups)

If @ is & reduced group admitting compact topologies and T is the
sot of compact topologics of if, then by (6.1), (ii)

@ = D"D, and, if teT, then v = P(ctAD,).
P P

By Theorems 6.15, 6.26 and Lemmas 9.2 and 9.3 for each prime p
we have

.Dp = p(1)+-°'+D‘p(kp)1

where for each ¢ =1,2,..., %, the group D,(i) either belongs to the
class M (compare section 9) or has exactly one compact topology. More-
over, for each vel' and each prime p there is an automorphism ¢? of the
group D, such that the groups D,(i), 1 =1, 2,..., k,, are closed in the
topology t¢?. Hence if

o= ot

P

thon for each prime p and ¢ =1,2,...,k, the group D,(i) is closed in
the topology e, in the group G and

ky
19, = P P (vp, A Dy(i)).
P iml

Thus we have proved the following

THROREM 11.1. For each reduced group @ admitting compact topolo-
gies we have

(11.1) ¢=)"a,

at B

where = 18 a countable set and either G, M or it has exactly one compact
topology. Moreover, if T is the sct of compact topologies of G, then there exists
a set S isomorphio with T' and such that for each 7S and aeZ the group @
8 closcd in the topology v and

Tt=2(vA\G,).
ae8
Thoe Main Theorem for reduced groups follows easily from Theorems
111 and 10.1. Wo have
TuEOREM 11.2. If G is a rcduced group and T the set of ils compact

topologies, then theve exists a semi-regular st W of compact topologies of
@ isomorphio with T.
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Proof. Suppose T is non-void. Then G admits tho decomposition
(11.1). Let 8 be the set of compact topologies constructed in Theorem
11.1. By Theorem 10.1 for each teS there exists an automorphism ¢
of the group @, such that the set

{UTpr: 7o = TAGy T8}

has a common invariant extension g, (If @, has for some a<Z exactly
one compact topology, then we put ¢; = ¢|@,.) Hence, since T = 2,

at s

for each eS8, the measure

p=2u,

acE

js an invariant common extension of the set {u,: ve W}, where W =
{r:: v¢8, ¢, = 203}

12. Proof of the Main Theorem (conclusion)

Now at last we are in a position to prove the Main Theorem in its
whole generality. We prove

THEOREM 12.1. Let G be a group and lct T be the sct of tts compact
topologies. Then there exists a semi-regular sct 8 of compact topologies of G
tsomorphic with T.

Proof. Suppose T is non-void. Then by Lemma 7.1

G = D+A+B,

where D is the maximal divisible subgroup of G and A < D. Moreover,
for each compact topology 7 in @ there exists an automorphism 7, of ¢
such that the subgroup B is closed in the topology z7,. Let

(12.2) T = {vn,: 7T}

The proof of the theorem splits into two cases: 1. D = 5, 2. D<G=B.

Case 1. Since D is closed in cach compact topology in G the set
Ty = {r AD: teT'}is a sot of compact topologies in D. We define a system
(T'yI') putting for each zeT’

(T I') =t AD.

Since T < of — o and, by Lemma 9.1, De M, by Thcorem 10.1 for
each v<T" there exists an automorphism ¢, of D such that the system
(SI") defined by the equality

t(8T") = ©(T,T")7,
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is regular. Let » denote the homomorphism n: G — G/D = (. For each
z¢T" the topology = = 7 is a compact topology in C. Since O is reduced
by Theorem 11.2 for each 7eZ" there exists an automorphism @, of O
such that the set § = {t@,: veT'} is semi-regular. For each reT’ we put

P = ‘Pt+ Q’r-
Then ¢, is an automorphism of G and the set

= {vp,: 1T’}
is isomorphic with T and hence with 7. The set S has the following
properties:

(1) 8 = {zAD: ve8}. Henoe if v/, 7" €8 and 1’ 1", then T'AD+#
' AND tmd the set {p,' t¢f8} has a common invariant emtension i in which
the measures u,, eS8, are independent.

(ii) 8 = {z: ve8}. Hence the set {uz: t¢8} has a common invariant
extension .

We are going to prove that § is semi-regular.

Consider the o-field & = [\ %,],. If M4, then for each z<G we

teS

have M —2ze¢%4 and hence (M —a2)~De# = [|UJ4%.],- Thus the measure
1§

4 is defined on the set (M —a2)~D. Consider the function

g (@) = p[(M—2)~D].

Since gz is invariant, the function gy (z) is constant on the cosets 24D,
we@, and thus it defines the funection

In(Z) = gu(on?), ZTe0,

on the group C. We are going to prove that §r(Z) is a measurable function
with respect to the o-field & = [(U%;],. If M 4%, for some 78, then, as
768
is well known (see e.g. [3], p. 281), the function § (%) iskmea.su.ra.ble
with respect to the o-field %;, where T = a. Suppose M = () I;, where
fel

M{égfi and T; # T4 for ¢ #j, 'I,,j =1, 2, ceey K. Then
(M —z)~D = "[(M;—a)~D]
{m1
and further, since (M;—z)~De%;,, where 7, = ; A D, T, %17 for i #j

and the measures pt;, ¢ = 1,2, ..., &, are independent in their common
extension x, we have

u[ﬂ(M—w)nD] H 3, [(M,~ )~ D).

Rozprawy Matematyczne XXXVIII Lt
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Hence &
i@ = [ [ 3m,®.

=1
Since for each i =1,2,...,k the function §u (%) i3 measurable with
respect to #,, 7; = 1;7, their product Fu (%) is measurable with respect
to #. Let E be the class of sets M for which the functions gas () are de-

fined and measurable with respect to 4. If 4 = US.@,, then A4 is a com-

plementative class and A C E. Moreover, a8 we have just proved, the
class of the finite intersections of sets of A is contained in E. From the
elementary properties of measurc it follows that classes A and E satisfy
also eonditions (iii) and (iv) of Lemma 1.5. Thus by Lemma 1.5 we get
% = [A], C E, which proves the measurability of g (x) for all the sets
M of 4.

For each set M eZ wo put

p(M) = [ju(@)p(dz).
o

Obviously u is an invariant measure in . To see that 4 is an extension
of the measures u., 7§, it is sufficient to recall the well known fact
(see e.g. [3], p. 282) that if M %, for some 78S, then

w(M) = [fu(@)p:(dZ) with 7 = 1a.
0
Case 2. Suppose now that D < @ = B. If D = 0, then the group G
is reduced and Theorem 12.1 follows immediately from Theorem 11.2.
Let then D ## 0. By (6.1), (i) we have D > ¢. Since the group B is re-
duced (and admits compact topologies), then by Theorem 11.1

B =2*Ba, where . E = No
a¢E
and for each aeZ either B,¢ M or it has exactly one compact topology.
Following Theorem 11.1 for each ze¢T’ we find an automorphism ¢,
of B such that if ¢, = ¢, +¢|D--¢| A, then for any aeZ the group B,
is closed in the topology g, and
10, = 2 (1p. A\ B,).

ael
Let
(12.3) T" = {rp,: 7el"}.

Without lost of generality we may assume that the sct 5 is the set of
ordinals < o, with w = F = §,, such that

a < $ < w,.implies B, < B,.
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We introduce some notation. For each e < w, we write

B = Z*Ba; B = Z*Bﬁa

a<f<uwp asﬂ<¢uc
x": @ > G[B* = D+A+ )" B, = G,,
- B<ga
7't G > G[B* =D+A+ )" By =G..
fi<a

Obviously the groups B® and B® are closed in cach of the topologies of
T". Let a, be the first ordinal < w, for which f_?ao > D. The existence
of a, follows at once from the fact that the converse inequalities, i.e.
B.<D, a< w;, together with the equalities D = 2™ and w, = Ry,
imply that

B = E*B,, < Dt = D.
¢l<mc
A gimilar argument shows that
(12.4) >*B,<D andhence &, =D.
¢<do
We have
(12.5) If a > a,, then G, = B,.

To prove this we note that since for all a < w; G, > ﬁ;, it is suf-
ficient to prove the inequality &, < B, for ¢ > e,. But since D < E,o for
a > a,, the result follows from the inequality

(12.6) DBy <B, for azau,

b<a
To see (12.6) we note that for each § < w, we have f?,, = 2™ and, since
for y > f we have B; < E,,, the cardinals m, can be chosen in the way
that for y > 8 we have also m, > m,. Hence

TB, = 2" where n= Zm,.

fi<a f<a

But since a is countable and m; < m, for every f < ¢, we have n <m,
which proves (12.6) and hence (12.5).

According to the assumption D > c¢. Thus among the groups B,,
a > ag, there is no group having exactly one compact topology, because,
a8 one can see at the first glance, by Theorem 8.10 each group of that kind
has cardinal < c¢. Thus we get

(12.7) B,eM for each a = a,.
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For every a > a, congider the set
T (a) = {z*: 7" = 12", vel"}.
Since T"'(a) is a set of compact topologies of G,, by Lemma 1.2 we get

7" (a) < 2% = 9%a,
Accordingly,
T (0) = {tg: 7o = 2", TT"'}).

Since the group (7,0 satisfies the conditions of case 1, for each 7°¢7'(0)
there exists an automorphism ¢, of @, such that the set

8, = {fo‘P,ﬁ "< (0)}

is gemi-regular. For each a > a, consider the system (T,T"'(a)) defined
in B, by the equality

P(TVT"(a)) = °ABay, T ().

By (12.7) and Theorem 10.1 for each a = ¢, and "¢1"’(a) there exists
an automorphism ¢, of B, such that the system (S,7''(a)} defined in
B, by the equality

‘!'a (S,,T"(a)) — ‘r“(T,’,'T"(a))tp',, ‘tutT”(d),
is regular. Put

(12:8) P =Pt D P

fRa< wp

Hence the set

(12.9) 8 = {p.: Tel"}
has the following properties:
(i) § s isomorphic with T
(ii) 8y = {zn": 78} is semi-regular;
(iii) 8, = {r AB,: T8} is regular;
(iv) if 72" # 1,2" for some a > a,, then 7, AB, % 14 A By;

(v) for every two different compact topologics t,, v, of S there cxists
a < w; such that t,n° # 1,7",

(vi) f 7y, 72¢8 and for some a > a, we have 1,7 # v,7", then there
exists B < a such that 7,7" £ 1,7,

Property (i) follows at once from (12.2), (12.3) and (12.9).
To verify (ii) and (iii) it is sufficient to note that

T’_zao"’,;ao = 1¢; e and (T /\ Ba)?r/\ B, = TPy A Ba .
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In order to prove (iv) we show first that the inequality 7,7 # T,n"
implies the inequality ¢,#* 7 #,2", where 7, = 4,9, , 7, = boPeyy U1y taeT".
Suppose t,n* = t,2*. Then for all By ap < < a, we have i,2° = ;2
and ¢,7" = t,z". Hence, putting

p(t) = Pymay+ 2 * Pusp DA @(ly) =@Ptynay+ Z* Plyrf
gp<h<a ap<f<a
we get fp(t,) = p(t,). Thus Lo tp(tl) = 1,7 qp(ta and hence by (12.8)
t, 7" ;é 17", by the regulanty of the system (S T"(a )), implies that the
topologies (3 A B,)@ene = T1 A B, and ({, A B, )Pryna = T3 A B, ave differ-
ent.
We verify (v) by the following argument. Suppose that for some

Ty, TS We have 7,7° = 7,n" for all ¢ < w;. Let Ver,. Since (M B* =0
u<mc

and the groups B® are closed in 7,, there exists an ordinal ¢ < w, and
a set W in 7, such that Wa®(n®)~' CV. But, according to the assumption,
Wn'et,n* and hence, since B® is closed in 7,, we have Wn®(n")er,,
which, by the symmetry, gives 7, = 7,.

We prove (vi) by the same reasonning replacing w, by a.

The properties (v) and (vi) imply the following property of the
set S:

(12.10). If 1,, 7, are two different topologies of the set 8 such that t,m"
= 1,7t°, then there exwists the unique ordinal a such that v, A Bg# 14 A By
for all f > a and 7,7° = 1,7°. We denote it by a(ry, 7). If 7,78° # 1,7"
for all a, then we put a(ry, T,) = a,.

Let F be an arbitrary but fixed finite subset of 8. Let

ao<al<---<an

be the sequence of ordinals defined as follows: if a,, ay, ..., a, are already
defined, then e, is the first ordinal such that a < ax,, and a;,; = a(z’, 7"')
for some 7', t"'eF.

For eaoh topology v in F and integer k, —1 <k <n, wo define
a set 4(r, k) putting

{t: teF and n% =ix%}, if k>0,
F if &k

’

3z, k) =

It follows from (12.10) that
(12.11)  if s,1ed(z, b—1), then s =ta", k = 0,1,...,n.
We have also
(12.12) 6(t,n) = {tr} for each zeF.
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Let

4(t, k) = {6: 6 = 6(t, k+1), ted(z,k)}, k= -—1,0,1,...,n.
We have
(12.13) or, k)= U 9.

3eA(v,k)
If 6(r',k)~6(7", k) #a for some t',7"el, then 4&(z", k) = o(z", k).
Thus for each fixed number %k, k = —1,...,n, the family

Ay, = {8(v, k): rel}

is a partition of the set ¥ and, by (12.13), 4;_, is a refinoment of 4,. Thus
if 8', 8" are two different sets of A(r, k—1), then for t'ed’, "7¢6"” we
have 7'7n% £ 7'’ and by the definition of a, and (12.10) v' AB, # "' A B,
for all a > a;. In other words, if @ is the mapping of § onto 8, defined
by

a: 7 = 1A\B,,
then

(12.14) dand”"a =9 for all a > a.

According to property (ii) the set S, is semi-regular, i.e. the measures
Py To€Sp, have a common invariant extension g,. By property (iii) the
set S, is regular, i.e. the measures p., t°¢S,, have & common invariant
extension u, in which they are independent.

We are going to prove that the set § is semi-regular.

Write

= 2 uy pM= 24,
ach<aop agy<f
For each set MeZ# = [{J%,], we have MAB"«2" = [\(UZ, A B,

reS wS
for every a > a,. Thus the function

ga (@) = p[(M — )~ B*]

is defined for each we@. Since p® is invariant in B%, g (o) defines
the unique function §u(Z) = gp(¥a%—!) on G°°. Wo prove that the

function Jy(Z) is measurable with respect to the o-field &, = [ DBl
veS
To do this we consider first the sets M e of the form

(12.15) M = (\M,, where M., e%,.
“wP
We have

M~ B = Lg(M,—m)nE"O = (M My~B*, where M,= ("(M,—).
) Co 84y ' ’
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Since for each a the measures u,, t°¢S,, are independent for different
*e8, and (12.14), with %k = 0, implies (3.3), the conditions of Lemma
3.3 are satisfied. Hence

B (MABY) = [ [ uro(MynB).
ddy
Thus in order to prove the measurability of §,/(Z) with respect to %,
it is sufficient to prove that each of the functions J;(Z) = f3(% (=")~"),
where

fi@) = u"ogrj (M,—2 )~B%], 6= 6(z,1),

is measurable with respect to Z;e,. To do this we prove

(12.16) For each teF the function f5(x) defined on @, by F;(z) =
fi(z(n°0)7"), where

fi (@) = u“"[Q(Mz—w)ﬁE""], 6 = 8(z, k),

i8 measurable with respect 1o B za,.
We prove (12.16) by induction on k. For ¥ = n, by (12.12), we have

N (M;—z)~B*» = (M,—z)~B%.
ted(r,n)
Hence, since B™ is a subgroup of @ closed in 7, the measurability with
respect to #,;., of the function 7}‘,, () follows from the well known
theorem (see e.g. [3], p. 281). Suppose that (12.16) is true forn,n—1, ...,
k> 0. We prove that it is true for t—1. We have '

#ak—l 3 'u,u -l'ukx #ak.

Since p% is an invariant measure in B%, for each set X <[|J@, A B%*-1],
. 1" S
we have

(12.17) peiX) = [ Rx@)urrdy),

Eﬂk_ l;lak

where %ix(7) is the function on B%-1a% defined by hx(¥F) = hx(y(=*)™")
and hx(y) = u* (X —y)~B%], yG. Put
(12.18) X= (N MA~B%
ted(r,k—~1)
Then, by (12.13),
(X—9)~B% = () (My—y)~nB%= [ ((M—y)nB™.
ted(zr,k—1) Oed(r,k=1) 1ed
Since - the measures e, t"eS,, are independent for different . z%¢g,,
by (12.14), the conditions of Lemma. 3.3 are satisfied (for = M)
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Thus
pE(X—y)~B*¥ = () p* N (M—y)nB%],
ded(z,k—1) ted
and hence
(12.19) ix@ =[] 5@, geBunt

ded(z,k—1)

But, a.ccordmg to the inductive hypothesis, for each ded(z, k—1) the
function fi(7) is a function on G measurable with respect to %o,
where 6 = 6(t, k)ed(z, k—1). But by (12.10) and the definition of q,
iz = rn’%. Hence the product

[l #i@ =kx(@, 7§,
ded(t,fe—1)
is a meagurable function with respect to Z;%. Since #,% i8 tho o-field
of Baire sets defined by a compact topology vz in Gak, the functioh
kx(Z+7), Z, 7@, is a function of two variables measurable with respect
to B;%. Thus, gince kx(7) = hx(y) for e B%—1a%, we have

pX—3) = [ kx@E+Fp%r%(dY), TG,
B%—1.3%

The function u% (X —%) is constant on each coset Z--B™%-1.7%, meG

and by [3] (p. 279) it defines a function P(Z) on G, /B""—ln"" —G,,k

measurable with respect to Z;ox—1. It follows. 1mmedmtely from (12.18)

a.nd the definition of the function fi '(x), 6 = 8(z, k—1), that P(z)
—1(z). This completes the proof of (12.16).

So far we have proved that if M is the finite intersection of sets
M,, M. e%,, then the function §p(Z) is measurable with respect to %,
To prove that 7y (x) has this property with arbitrary M <%, we copy
the reasonning used in the proof in case 1. We consider the class E of
sets M for which the function § (%) is measurable with respect to %,.

Then if A = [|U%,], we know that A CE and, morcover, the class of
w9

the finite intersections of sets of A is contained in E. Conditions (iii)-
(iv) of Lemma 1.6 follow eagily from the elementary properties of meas-
ure. Thus we get # = [4],C E, which completes the proof of measur-
ability of the function §y(%).

We define an invariant measure on # putting for each M

p(M) = f G11(Z) o (dT) .

G“o

The proof that the measure z is an invariant extension of the measures
M, TS, is precisely the same as the corresponding one in case 1.
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