Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 2 | 33–64
Tytuł artykułu

Krótka historia kodyfikacji na rzecz chemii przyjaznej środowisku

Warianty tytułu
EN
A Brief History of Codifications for Environmentally Friendly Chemistry
Języki publikacji
PL
Abstrakty
EN
Since the beginning of the 1990s, environmental protection has played an increasingly important role both in the chemical industry and in the scientific work of chemists in the academic world. A noteworthy feature of the so-called green chemistry and sustainable chemistry is the emphasis that practitioners of both disciplines lay on codifying the principles, rules, and characteristics that environmentally friendly chemical reactions and processes should meet. These codifications have a complicated epistemological status: they aim to set the criteria of ‘greenness’, indicate the direction of scientific development, and build the foundations for new research programs. While the most famous of these codifications are the twelve principles of green chemistry developed in the United States in 1998, successive attempts to codify a new type of environmentally friendly chemistry have been regularly made over the last twenty years – not only in the United States but also in Germany. Starting with American green chemistry, through German ‘soft chemistry’ (sanfte Chemie) and chemistry for sustainable development, and ending with circular chemistry, this article is an attempt to familiarize the Polish reader with this new tool in the work of researchers and engineers. Its purpose is to pay particular attention to the context of the creation and interpretation of consecutive sets of rules of a new type of chemistry and the challenges related to their application.
Twórcy
  • Instytut Historii Nauki im. L. i A. Birkenmajerów PAN
Bibliografia
  • Abraham M.A., Nguyen N., “Green Engineering: Defining the Principles” – Results from the Sandestin Conference, „Environmental Progress” t. 22, 2004, s. 233–236, DOI 10.1002/ep.670220410.
  • Anastas P., Warner J.C., Green Chemistry: Theory and Practice, Oxford 1998.
  • Anastas P.T., Zimmerman J., Design through the Twelve Principles of Green Engineering, „Environmental Science and Technology” t. 37, 2003, s. 94A–101A.
  • Asfaw N., Chebude Y., Ejigu A., Hurisso B.B., Licence P., Smith R.L., Tang S.L.Y., Poliakoff M., The 13 Principles of Green Chemistry and Engineering for a Greener Africa, „Green Chemistry” t. 13, 2011, s. 1059, DOI 10.1039/C0GC00936A.
  • Becher D., Vermeiden, Vermindern, Verwerten – integrierter Umweltschutz in der Produktion, [w:] Die Bayer-Umweltperspektive Il, Leverkusen 1991, s. 34.
  • Bensaude-Vincent B., Simon J., Chemistry, the Impure Science, London 2008.
  • Blum C., Bunke D., Hungsberg M., Roelofs E., Joas A., Joas R., Blepp M., Stolzenberg H.-C., Das Konzept der Nachhaltigen Chemie: Schlüsselfaktoren für den Übergang zu einer nachhaltigen Entwicklung, „Sustainable Chemistry and Pharmacy” t. 13, 2019, 100140, DOI 10.1016/j.scp.2019.100140.
  • Chemat F., Abert Vian M., Cravotto G., Green Extraction of Natural Products: Concept and Principles, „International Journal of Molecular Sciences” t. 13, 2012, s. 8615–8627.
  • Christ C., Production-Integrated Environmental Protection and Waste Management in the Chemical Industry, Weinheim 1999, DOI 10.1002/9783527613861.
  • Christ C., Umweltschutz in der chemischen Industrie – Vermindern und vermeiden von Abfallen, [w:] Umwelt, Logistik und Verkehr, red. R. Junemann, Dortmund 1992, s. 61–70.
  • Erythropel H., Zimmerman J., de Winter T., Petitjean L., Melnikov F., Lam C.H., Lounsbury A., Mellor K., Jankovia N., Tu Q., Pincus L., Falinski M., Shi W., Coish P., Plata D., Anastas P., The Green ChemisTREE: 20 Years after Taking Root with the 12 Principles, „Green Chemistry” t. 9, 2018, s. 1929–1961, DOI 10.1039/C8GC00482J.
  • Fischer H., Appelhagen H.G., Chemiewende: Von der intelligenten Nutzung natürlicher Rohstoffe, München 2017.
  • Fischer H., Plädoyer für eine Sanfte Chemie, Braunsweig 1993.
  • Garnier E., Une approche socio-économique de l’orientation des projets de recherche en chimie doublement verte, praca doktorska obroniona w Université de Reims Champagne-Ardenne, 2012.
  • Gleich A. von, Der wissenschafltiche Umgang mit Natur – Über die Vielfalt harter und sanfter Naturwisseschaften, Frankfurt 1989.
  • Gospodarka o obiegu zamkniętym: definicja, znaczenie i korzyści (wideo), www.europarl.europa.eu/news/pl/headlines/priorities/gospodarka-o-obiegu-zamknietym/20151201STO05603/gospodarka-o-obiegu-zamknietym-definicja-znaczenie-ikorzysci-wideo [dostęp 21.06.2021].
  • Green Chemistry, 12 Principles of Green Engineering, www.acs.org/content/acs/en/greenchemistry/principles/12-design-principles-of-green-engineering.html [dostęp 21.06.2021].
  • Green Chemistry, Design Principles, www.acs.org/content/acs/en/greenchemistry/principles.html [dostęp 21.06.2021].
  • Green engineering, en.wikipedia.org/wiki/Green_engineering [dostęp 21.06.2021].
  • Hutzinger O., The Greening of Chemistry – Is It Sustainable?, „Environmental Science and Pollution Research” t. 6, 1999, s. 123.
  • Jessop P., Editorial: Evidence of a Significant Advance in Green Chemistry, „Green Chemistry” t. 22, 2020, s. 13–15, DOI 10.1039/C9GC90119A.
  • Keijer T., Bakker V., Slootweg J.C., Circular Chemistry to Enable a Circular Economy, „Nature Chemistry” t. 11, 2019, s. 190–195, DOI 10.1038/s41557-019-0226-9.
  • Kirschner M., Zauberstoff für eine Sanfte Chemie, „Bild der Wissenschaft” t. 4, 1993, s. 14–18.
  • Kümmerer K., Amsel A.-K., Bartkowiak D., Bazzanella A., Blum C., Cinquemani C., Key Characteristics of Sustainable Chemistry. Towards a Common Understanding of Sustainable Chemistry, Bonn 2021.
  • Kümmerer K., Clark J.H., Zuin V.G., Rethinking Chemistry for a Circular Economy, „Science” t. 367, 2020, s. 369–370, DOI 10.1126/science.aba4979.
  • Lenoir D., Schramm K.-W., Lalah J.O., Green Chemistry: Some Important Forerunners and Current Issues, „Sustainable Chemistry and Pharmacy” t. 18, 2020, 100313, DOI 10.1016/j.scp.2020.100313.
  • Linthorst J.A., An Overview: Origins and Development of Green Chemistry, „Foundations of Chemistry” t. 12, 2010, s. 55–68, DOI 10.1007/s10698-009-9079-4.
  • Llored J.P., Sarrade S., Connecting the Philosophy of Chemistry, Green Chemistry, and Moral Philosophy, „Foundations of Chemistry” t. 18, 2016, s. 125–152, DOI 10.1007/s10698-015-9242-z.
  • Llored J.P., Towards a Practical Form of Epistemology: the Case of Green Chemistry, „Studia Philosophica Estonica” t. 5, 2012, s. 36–60, DOI 10.12697/spe.2012.5.2.04.
  • Malle K.-G., Sanfte Chemie halbokkult?, „Nachrichten aus Chemie, Technik und Laboratorium” t. 42, 1994, s. 64, DOI 10.1002/nadc.19940420121.
  • Nieddu M., Existe-t-il réellement un nouveau paradigme de la chimie verte ?, „Natures Sciences Sociétés” t. 22, 2014, s. 103–113, DOI 10.1051/nss/2014022.
  • Ribeiro G.T.C., Costa D.A., Machado A.A.S.C., “Green Star”: a Holistic Green Chemistry Metric for Evaluation of Teaching Laboratory Experiments, „Green Chemistry Letters and Reviews” t. 3, 2010, s. 149–159, DOI 10.1080/17518251003623376.
  • Roberts J., Creating Green Chemistry: Discursive Strategies of a Scientific Movement, praca doktorska obroniona w Virginia Polytechnic Institute, 2006.
  • Tang S.L.Y., Bourne R., Smith R., Poliakoff M., The 24 Principles of Green Engineering and Green Chemistry: “IMPROVEMENTS PRODUCTIVELY”, „Green Chemistry” t. 10, 2008, s. 268–269.
  • Tang S.L.Y., Smith R.L., Poliakoff M., Principles of Green Chemistry: PRODUCTIVELY, „Green Chemistry” t. 7, 2005, s. 761–762, DOI 10.1039/B513020B.
  • The ACS Green Chemistry Institute, Design Principles for Sustainable Green Chemistry & Engineering, 2015, www.acs.org/content/dam/acsorg/greenchemistry/resources/2015-gci-design-principles.pdf [dostęp 18.09.2021].
  • Trost B., The Atom Economy – A Search for Synthetic Efficiency, „Science” t. 254, 1991, s. 1471–1477, DOI 10.1126/science.1962206.
  • Winterton N., Twelve More Green Chemistry Principles, „Green Chemistry” t. 3, 2001, s. G73–G75.
  • Woodhouse E.J., Breyman S., Green Chemistry as Social Movement?, „Science, Technology, & Human Values” t. 30, 2005, nr 2, s. 199–222, DOI 10.1177/0162243904271726.
  • Zhang XF., Liu ZG., Shen W., Gurunathan S., Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, „International Journal of Molecular Sciences” t. 17, 2016, s. 1534.
  • Zielona chemia, pl.wikipedia.org/wiki/Zielona_chemia [dostęp 21.06.2021].
  • Zuin V.G., Eilks I., Elschami M., Kümmerer K., Education in Green Chemistry and in Sustainable Chemistry: Perspectives towards Sustainability, „Green Chemistry” t. 23, 2021, s. 1594–1608, DOI 10.1039/D0GC03313H.
  • Zuin V.G., Segatto M.L., Zandonai D.P., Grosseli G.M., Stahl A., Zanotti K., Andrade R.S., Integrating Green and Sustainable Chemistry into Undergraduate Teaching Laboratories: Closing and Assessing the Loop on the Basis of a Citrus Biorefinery Approach for the Biocircular Economy in Brazil, „Journal of Chemical Education” t. 96, 2019, s. 2975–2983, DOI 10.1021/acs.jchemed.9b00286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.desklight-0e49f41a-5d7f-453b-a9d9-5d30770d6083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.