Warianty tytułu
Języki publikacji
Abstrakty
A simple Henkin-style completeness proof for Gödel 3-valued propositional logic G3 is provided. The idea is to endow G3 with an under-determined semantics (u-semantics) of the type defined by Dunn. The key concept in u-semantics is that of “under-determined interpretation” (u-interpretation). It is shown that consistent prime theories built upon G3 can be understood as (canonical) u-interpretations. In order to prove this fact we follow Brady by defining G3 as an extension of Anderson and Belnap’s positive fragment of First Degree Entailment Logic.
Czasopismo
Rocznik
Tom
Numer
Strony
371–390
Opis fizyczny
Daty
wydano
2014-12-01
online
2014-01-07 2014-12-01
Twórcy
autor
- Dpto. de Psicología, Sociología y Filosofía, Universidad de León, Campus de Vegazana, s/n, 24071, León, Spain , gemmarobles@gmail.com
Bibliografia
- Anderson, A.R., and N.D. Belnap, Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, 1975.
- Baaz, M., N. Preining, and R. Zach, “First-Order Gödel Logics”, Annals of Pure and Applied Logic, 147 (2007): 23–47. DOI: 10.1016/j.apal.2007.03.001
- Brady, R., “Completeness Proofs for the Systems RM3 and BN4”, Logique et Analyse, 25 (1982): 9–32.
- Dunn, J.M., “The algebra of intensional logics” (1966). Doctoral dissertation, University of Pittsburgh (Ann Arbor, University Microfilms).
- Dunn, J.M., “Intuitive semantics for first-degree entailments and ‘coupled trees’”, Philosophical Studies, 29 (1976): 149–168. DOI: 10.1007/BF00373152
- Dunn, J.M. “A Kripke-style semantics for R-Mingle using a binary accessibility relation”, Studia Logica, 35 (1976): 163–172. DOI: 10.1007/BF02120878
- Dunn, J.M., “Partiality and its dual”, Studia Logica, 66 (2000), 5–40. DOI: 10.1023/A:1026740726955
- Dunn, J.M., and R.K. Meyer, “Algebraic completeness results for Dummett’s LC and its extensions”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 17 (1971), 225–230. DOI: 10.1002/malq.19710170126
- Gödel, K., “Zum intuitionistischen Aussagenkalkül”, Anzeiger Akademie der Wissenschaffen Wien, Math.-Naturwissensch, Klasse, 69 (1933): 65–66.
- González, C., “MaTest” (2012), available at Link (Last access 10/10/2013).
- Łukasiewicz, J., “Die Logik und das Grundlagenproblem”, Les Entretiens de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques, 6–9 (1938), 12: 82–100.
- Robles. G., “A Routley-Meyer semantics for Gödel 3-valued logic and its paraconsistent counterpart”, Logica Universalis (forthcoming). DOI: 10.1007/s11787-013-0088-7
- Robles, G., and J.M. Méndez,“A paraconsistent 3-valued logic related to Gödel logic G3”(manuscript).
- Robles, G., F. Salto, and J.M. Méndez, “Dual equivalent two-valued under-determined and over-determined interpretations for Łukasiewicz’s 3-valued Logic Ł3”, Journal of Philosophical Logic (2013). DOI: 10.1007/s10992-012-9264-0
- Routley, R., V. Routley, “Semantics of first-degree entailment”, Noûs, 1(1972): 335–359. DOI: 10.2307/2214309
- Routley, R., R.K. Meyer, V. Plumwood, and R.T. Brady, Relevant Logics and their Rivals, vol. 1, Atascadero, CA: Ridgeview Publishing Co., 1982.
- Slaney, J., MaGIC, Matrix Generator for Implication Connectives: Version 2.1, Notes and Guide, Canberra: Australian National University, 1995. Link
- Van Fraasen, B., “Facts and tautological entailments”, The Journal of Philosophy, 67 (1969): 477–487. DOI: 10.2307/2024563
- Yang, E., “(Star-based) three-valued Kripke-style semantics for pseudo-and weak-Boolean logics”, Logic Journal of the IGPL, 20 (2012): 187–206. DOI: 10.1093/jigpal/jzr030
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-03517793-cd1f-4c0a-a052-456e13cdba2f