Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Hybrydowy model eksperckiego systemu oceny stabilności systemu produkcyjnego
Języki publikacji
Abstrakty
Background: The article presents the concept of control of the production system, which allows to maintain its stability, and thus to implement the established production plans. For this purpose, combinations of simulation models and artificial neural network (ANN) models of the production system have been suggested. The combination of both types of models was possible thanks to the development of a hybrid model of the expert system to assess the possibility of implementing the production plan (objective) depending on the risk size and the level of stability of the production system analysed. The analysed problem - the possibility of implementing production plans depending on the risk size and the level of stability of the production system - is difficult to mathematical modelling. However, based on the data analysis from the simulation model and the ANN model, we can obtain information on the dependences of the corresponding input and output values. Methods: Based on the presented method of managing the production process using computer models, the possibilities of using simulation models and ANN models in assessing the stability and risk of production systems have been analysed. The analysis and comparison of both types of models have been performed due to the construction and the type of input and output data. Results: The direct combination of simulation models and ANN models is not allowed by their different structure, specificity and other types of input and output data. Therefore, the concept of combination of both types of models presented in the article is conducted via a database of expertise and fuzzy inference. Conclusions: For the purpose of controlling the production system, it was suggested to build a hybrid model of an expert system to assess the possibility of achieving the objective depending on the risk size and the level of stability of the production system.
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem – możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego – jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
507-518
Opis fizyczny
Twórcy
autor
- Wroclaw University of Technology,Wroclaw, Poland, anna.burduk@pwr.wroc.pl
autor
- Poznan University of Technology, Poznan, Poland, katarzyna.grzybowska@put.poznan.pl
autor
- Budapest University of Technology and Economics, Budapest, Hungary, gabor.kovacs@logisztika.bme.hu
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.desklight-01cdd56d-deac-4f38-9a60-e1b230b8dce8