Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Peripheral vision has been the topic of few studies compared with central vision. Nevertheless, given that visual information covers all the visual field and that relevant information can originate from highly eccentric positions, the understanding of peripheral vision abilities for object perception seems essential. The poorer resolution of peripheral vision would first suggest that objects requiring large-scale feature integration such as buildings would be better processed than objects requiring finer analysis such as faces. Nevertheless, task requirements also determine the information (coarse or fine) necessary for a given object to be processed. We therefore investigated how task and eccentricity modulate object processing in peripheral vision. Three experiments were carried out requiring finer or coarser information processing of faces and buildings presented in central and peripheral vision. Our results showed that buildings were better judged as identical or familiar in periphery whilst faces were better categorised. We conclude that this superiority for a given stimulus in peripheral vision results (a) from the available information, which depends on the decrease of resolution with eccentricity, and (b) from the useful information, which depends on both the task and the semantic category.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
42-53
Opis fizyczny
Twórcy
autor
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, CNRS, Université Lille Nord de France, CHRU Lille, Lille, France
autor
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, CNRS, Université Lille Nord de France, CHRU Lille, Lille, France
autor
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, CNRS, Université Lille Nord de France, CHRU Lille, Lille, France
autor
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, CNRS, Université Lille Nord de France, CHRU Lille, Lille, France
Bibliografia
- Boucart, M., & Naili, F. (2005). Reconnaissance implicite et explicite en vision périphérique [Implicit and explicit recognition in peripheral vision]. In Y. Coello, S. Casalis, & C. Moroni (Eds.),Vision, espace et cognition: Fonctionnement normal et pathologique[Vision, space, and cognition: Normal and pathological functioning] (pp. 13-29). Marseille: SOLAL.
- Boucart, M., Naïli, F., Despretz, P., Defoort-Dhelemmes, S., & Fabre-Thorpe, M. (in press). Implicit and explicit object recognition at very large visual eccentricities: No improvement after loss of central vision.Visual Cognition.
- Büser, P., & Imbert, M. (1987).Vision. Neurophysiologie fonctionnelle IV[Vision: Functional neurophysiology]. Paris: Hermann.
- Chung, S. T., Mansfield, J. S., & Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision.Vision Research, 38, 2949-2962.
- Collin, C. A., Liu, C. H, Troje, N., Mc Mullen, P. A., & Chaudhuri, A. (2004). Face recognition is affected by similarity in spatial frequency range to a greater degree than within-category object recognition.Journal of Experimental Psychology: Human Perception and Performance, 30, 975-987.
- Costen, N. P., Parker, D. M., & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition.Perception, 23, 129-146.
- Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification.Perception and Psychophysics, 58, 602-612.
- Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial frequencies in face perception.Perception, 12, 195-201.
- Goffaux, V., Jemel, B., Jacques, C., Rossion, B., & Schyns, P. G. (2003). ERP evidence for tasks modulations on face perceptual processing at different spatial scales.Cognitive Science, 27, 313-325.
- Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Identification of band-pass filtered letters and faces by human and ideal observers.Vision Research, 39, 3537-3560.
- Halit, H., De Haan, M., Schyns, P. G., & Johnson, M. H. (2006). Is high-spatial frequency information used in the early stages of face detection?Brain Research, 1117, 154-161.
- Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas.Neuron, 34, 479-490.
- Howell, D. C. (1998).Méthodes statistiques en sciences humaines[Statistical methods in Human Sciences]. Paris: Edition De Boeck, SNEL Grafics sa.
- Levy, I., Hasson, U., Avidan, G., Hendler, T., & Malach, R. (2001). Center-periphery organization of human object areas.Nature Neuroscience, 4, 533-539.
- Makela, P., Nasanen, R., Rovamo, J., & Melmoth, D. (2001). Identification of facial images in peripheral vision.Vision Research, 41, 599-610.
- Malach, R., Levy, I., & Hasson, U. (2002). The topography of high-order human object areas.Trends in Cognitive Sciences, 6, 176-184.
- Melmoth, D. R., Kukkonen, H. T., Makela, P. K., & Rovamo, J. M. (2000). The effect of contrast and size scaling on face perception in foveal and extrafoveal vision.Investigative Ophtalmology and Visual Science, 41, 2811-2819.
- Melmoth, D. R., & Rovamo, J. M. (2003). Scaling of letter size and contrast equalises perception across eccentricities and set sizes.Vision Research, 43, 769-777.
- Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes.Psychonomic Bulletin and Review, 8, 454-469.
- Naïli, F., Despretz, P., & Boucart, M. (2006). Colour recognition at large visual eccentricities in normal observers and patients with low vision.Neuroreport, 17, 1571-1574.
- Parker, D. M., & Costen, N. P. (1999). One extreme or the other or perhaps the golden mean? Issues of spatial resolution in face processing.Current Psychology, 18, 118-127.
- Oliva, A., & Schyns, P. G. (1997). Coarse Blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli.Cognitive Psychology, 34, 72-107.
- Rayner, K. (1995). Eye movements and cognitive processes in reading, visual search, and scene perception. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.),Eye movement research: Mechanisms, processes, and application(pp. 3-22). Amsterdam: Elsevier.
- Rousselet, G. A., Macé, M. J.-M., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes.Journal of Vision, 3, 440-455.
- Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object information and their interactions.Cognition, 67, 147-179.
- Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr. Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations.Cognition, 69, 243-265.
- Strasburger, H., Harvey, L. O. Jr., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view.Perception and Psychophysics, 49, 495-508.
- Strasburger, H., Rentschler, I., & Harvey, L. O. Jr. (1994). Cortical magnification theory fails to predict visual recognition.European Journal of Neuroscience, 6, 1583-1587.
- Strasburger, H., & Rentschler, I. (1996). Contrast-dependent dissociation of visual recognition and detection fields.European Journal of Neuroscience, 8, 1787-1791.
- Thorpe, S. J., Gegenfurtner, K. R., Fabre-Thorpe, M., & Bülthoff, H. H. (2001). Detection of animals in natural images using far peripheral vision.European Journal of Neuroscience, 14, 869-876.
- Vannucci, M., Pia Viggiano, M., & Argenti, F. (2001). Identification of spatially filtered stimuli as function of the semantic category.Cognitive Brain Research, 12, 475-478.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0065-5