Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let $f ∈ C^{α}(ℝ,ℝ)$ be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator
$(A_{x}f)(r) = 1/2r ∫_{x-r}^{x+r} f(z)dz$
has a critical point at r = γ for every x ∈ ℝ, then
f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ.
This statement can be used to derive a characterization of trigonometric functions as those nonconstant functions for which the computation of the maximal function ℳ is as simple as possible. The proof uses the Lindemann-Weierstrass theorem from transcendental number theory.
$(A_{x}f)(r) = 1/2r ∫_{x-r}^{x+r} f(z)dz$
has a critical point at r = γ for every x ∈ ℝ, then
f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ.
This statement can be used to derive a characterization of trigonometric functions as those nonconstant functions for which the computation of the maximal function ℳ is as simple as possible. The proof uses the Lindemann-Weierstrass theorem from transcendental number theory.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
263-278
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, CT 06511, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm8368-12-2015