Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In this work we discuss several ways to extend to the context of Banach spaces the notion of Hilbert-Schmidt operator: p-summing operators, γ-summing or γ-radonifying operators, weakly* 1-nuclear operators and classes of operators defined via factorization properties. We introduce the class PS₂(E;F) of pre-Hilbert-Schmidt operators as the class of all operators u: E → F such that w ∘ u ∘ v is Hilbert-Schmidt for every bounded operator v: H₁ → E and every bounded operator w: F → H₂, where H₁ and H₂ are Hilbert spaces. Besides the trivial case where one of the spaces E or F is a ''Hilbert-Schmidt space", this space seems to have been described only in the easy situation where one of the spaces E or F is a Hilbert space.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
193-218
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Université des Comores, Rue de la Corniche, B.P. 2585 Moroni (Comores)
autor
- Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence Cedex, France
autor
- Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence Cedex, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-1