Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of $l_{p}$ spaces. This characterization is used to show that multiple s-summing operators on a product of $l_{p}$ spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators $T: l_{4/3} × l_{4/3} → l₂$ such that none of the associated linear operators is s-summing (1 ≤ s ≤ 2). Further we show that if n ≥ 2, there exist natural bounded multilinear operators $T: l_{2n/(n+1)} × ⋯ × l_{2n/(n+1)} → l₂$ for which none of the associated multilinear operators is multiple s-summing (1 ≤ s ≤ 2).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
9-28
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Department of Mathematics, Ovidius University of Constanţa, Bd. Mamaia 124, 900527 Constanţa, Romania
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-1-2