Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let X and Y be two closed subspaces of a Hilbert space. If we send a point back and forth between them by orthogonal projections, the iterates converge to the projection of the point onto the intersection of X and Y by a theorem of von Neumann.
Any sequence of orthoprojections of a point in a Hilbert space onto a finite family of closed subspaces converges weakly, according to Amemiya and Ando. The problem of norm convergence was open for a long time. Recently Adam Paszkiewicz constructed five subspaces of an infinite-dimensional Hilbert space and a sequence of projections on them which does not converge in norm. We construct three such subspaces, resolving the problem fully. As a corollary we observe that the Lipschitz constant of a certain Whitney-type extension does in general depend on the dimension of the underlying space.
Any sequence of orthoprojections of a point in a Hilbert space onto a finite family of closed subspaces converges weakly, according to Amemiya and Ando. The problem of norm convergence was open for a long time. Recently Adam Paszkiewicz constructed five subspaces of an infinite-dimensional Hilbert space and a sequence of projections on them which does not converge in norm. We construct three such subspaces, resolving the problem fully. As a corollary we observe that the Lipschitz constant of a certain Whitney-type extension does in general depend on the dimension of the underlying space.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
175-186
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Department of Mathematics, University of Innsbruck, A-6020 Innsbruck, Austria
autor
- Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, CZ-11567 Praha, Czech Republic
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-4