Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a locally compact group. Its dual space, G*, is the set of all extreme points of the set of normalized continuous positive definite functions of G. In the early 1970s, Granirer and Rudin proved independently that if G is amenable as discrete, then G is discrete if and only if all the translation invariant means on $L^{∞}(G)$ are topologically invariant. In this paper, we define and study G*-translation operators on VN(G) via G* and investigate the problem of the existence of G*-translation invariant means on VN(G) which are not topologically invariant. The general properties of G* are also investigated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
97-121
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-1