Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We say that a real-valued function f defined on a positive Borel measure space (X,μ) is nowhere q-integrable if, for each nonvoid open subset U of X, the restriction $f|_U$ is not in $L^{q}(U)$. When (X,μ) has some natural properties, we show that certain sets of functions defined in X which are p-integrable for some p's but nowhere q-integrable for some other q's (0 < p,q < ∞) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González, improve and complement recent spaceability and algebrability results of several authors and motivate new research directions in the field of spaceability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
13-34
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
autor
- CAPES Foundation, Ministry of Education of Brazil, Brasília/DF 70040-020, Brazil
- Institute de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
autor
- Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-900, São Paulo, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-1-2